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Integration Techniques:-

1- Integration by Parts
So let’s derive the integration by parts formula. We’ll start with the product rule.

(fe)=rfegrfg

Now, integrate both sides of this.

[(fe)dx=[fg+fgdx

T'he left side 1s easy enough to integrate and we’ll split up the right side of the integral.
fe=[fgd+|fgdn

Finally, rewrite the formula as follows and we arrive at the integration by parts formula.

[fg'de=fo-[fgan

This is not the easiest formula to use however. So, let’s do a couple of substitutions.

u=f(x) v=g(x)
du= f'(x)dx dv=g'(x)dx
Using these substitutions gives us the formula that most people think of as the integration by parts

formula.

IdeVzuva.vdu

To use this formula we will need to identify # and dv, compute ¢ and v and then use the formula.
Note as well that computing v is very easy. All we need to do is integrate dv.

V= jdv
Example 1 Evaluate the following integral
jxeﬁx dx
Solution
6 -
U=x dv=e"dx
6x 1 6x
. dir = dx v:je dy=—e
The integ 6

Next, let’s take a look at integration by parts for definite integrals. The integration by parts
formula for definite integrals is,

Integration by Parts, Definite Integrals
b
j udv=uv

a

B b
—I vdu
a a




Example 2 Evaluate the following integral.
2
j xe® dy

Solution

This is the same integral that we looked at in the first example so we’ll use the same # and dv to
get,

2 X
J‘ xeﬁx dx — _eé.‘c
6

_%J‘iesxdx

2 2

6x

L
6 |, 36
11 7
=—e +—
36 36
Example 3 Evaluate the following integral.

"I"(3r+3)c05( ]dr

_ 1 eﬁx

-1

-6

Solution
Instead of splitting the integral up let’s instead use the following choices for « and dv.

u=3r+5 dv—cos( Jdr

du =3dt 1/—43111(

The integral is then,

|
ot

J+48005{ ! J+c
4

-lal-‘

4(3t+5)sin

o~

Example 4 Evaluate the following integral.

jw2 sin(10w)dw
Solution
For this example we’ll use the following choices for « and dv.
0= dv =sin(10w)dw
1
du =2wdw V= —Ecos(lﬁw)



The integral is then,
2

sz sin (10w)dhw = _%cos(l Ow)+ lJ.m:a:)s(lOu-') dw

In this example, unlike the previous examples, the new integral will also require integration by
parts. For this second mtegral we will use the following choices.

U=w dv =cos (1011")dw
I .
du =dw v=—sin(10w)
10
So, the integral becomes,

jw2 sin (10w)dw = —%cos (10w) +é(%sin(10w) - % j sin('lOw)dw]

2
w

:—_—COS(101v)+1(lsi11(10w)+_ :
10 SVI0 100

COS(lOH"))-i—C

W . W 1 :
- "O% 10 s - 10 s - 10 .
0 cos 1x)+5051n( w)+——cos(10w)+c
Example 5 Evaluate the following integral
I xa/x+1dx
(a) Using Integration by Parts. [Solution]
(b) Using a standard Calculus I substitution. [Solution]

Solution
(a) Evaluate using Integration by Parts.

In this case we’ll use the following choices for « and dv.

U=x dv=+x+1dx

2, 3
du = dx v:g(x+1)2

The integral 1s then,
2 32 3
J-xxﬂx+1dx :;,\‘(Hl)l —;J.(l'-i-l)z dx

3 4 5

:§A‘[x+'l)5 —E(A"I—l) +c



(b) Evaluate Using a standard Calculus I substitution.

Now let’s do the integral with a substitution. We can use the following substitution.
u=x+1 x=u-1 du =dx

Notice that we’ll actually use the substitution twice, once for the quantity under the square root
and once for the x in front of the square root. The integral is then,

J‘x\jx+ldx:_‘.(u—l)\/;du

3 1
:j-uz —u? du
il 3
2 3 3
=Zu:-—"u?+c
5 :
2 52 3

2 1 2 (xs1)
5(1+ ) 3(\+ )2 +c¢

Example 6 Evaluate the following integral.

jeg cos@do
Solution
i =cost dv=ede
du=—-smbdeé v=e’

The integral is then,
jeg cos8d6 =e° COSQ-!—IGG sméde

So, 1t looks like we’ll do mtegration by parts again. Here are our choices this time.
: g
u=sné dv=e’de

du =cos@do v=e’

The integral is now,
jeg cos8dO =e’ cosO+e’ si11:9—je€ cos@de

2[99 cosBd6 =ef cosO+e’sind

All we need to do now 1s divide by 2 and we’re done. The integral is,

j‘eg cos@de :%(eg cos @ +e° sir15)+c



2- Integrals Involving Trig Functions.
Let’s start off with an integral that we should already be able to do.

-5 3 . . . .
Icos xsin” xdx = ju dut using the substitution # = sin x

= —sin®x+c

Example 1 Evaluate the following integral.
jsin5 xdx

Solution
This integral no longer has the cosine in it that would allow us to use the substitution that we used

above. Therefore, that substitution won’t work and we are going to have to find another way of
doing this integral.
Let’s first notice that we could write the integral as follows,

- 2
. 5 . 4 . . 2 .
jsuf xdx = jsm xysmxdx = j(sm x) S1n X dx

Now recall the trig identity,
2 -2 - -2 - 2
cos” x+sm x=1 = sim-x=1-cos” x

With this identity the integral can be written as,

- 2
. 3 P 2' .
jsnf xdx :j(l—cos x) sin x dx

and we can now use the substitution # = cos x . Doing this gives us,
2
25 2
'[5111 X dx :f_‘.(l —u ) du

= —.f'l —2u® +u’ du

2
:—(31—313 -I—lf.-‘ﬁ +c
3 5

5
:—COSV\'-F;COS}.X—jCOS' X+cC
- J

The exponent on the remaining sines will then be even and we can easily
convert the remaining sines to cosines using the identity,

cos’x+sin‘x=1 (1)

Example 2 Evaluate the following integral.
jsiné xcos’ xdx
Solution

So, in this case we've got both sines and cosines in the problem and in this case the exponent on
the sine 1s even while the exponent on the cosine is odd. So, we can use a similar technique in
this integral. This time we’ll strip out a cosine and convert the rest to sines.

6 3 -6 2
j.‘jlﬂ XcCos .\’d,\’:jSHl XCOoS” xcosxdx



ro. 6 ) -2 .
= | sl x(l—sm l’)COSA’dX i =511X

= -Hﬁ(l—u‘z)du
— (2% = du
1 1 .

— ~sin’ x——sin°x4c¢

At this point let’s pause for a second to summarize what we’ve learned so far about integrating
powers of sine and cosine.

jsin” xcos™ xdx 2)

The integrals involving products of sines and cosines in which both
exponents are even can be done using one or more of the following formulas
to rewrite the integrand.
|
cos’ x = 5(1 + c05(2;\'))

I 1,

sIn” x = —(l —cos(2x))
2

: 1 . .

s x cos x =—sin(2x)
2
Example 3 Evaluate the following integral.
- 7
j sin” x cos” x dx

Solution

Solution 1
In this solution we will use the two half angle formulas above and just substitute them into the
integral.

jsi112 xcos® xdy = J %(1— 005(23‘))(%J(1+ cos (2,\‘)) dx

l ¢
zljl—coszﬂx)dx



In fact to eliminate the remaining problem term all that we need to do is reuse the first half angle
formula given above.

jsinz xcos’ xdx :l [1—%(1 +coS(4x))dx

o

1 [i—lcos('—‘l,\’)dx
4)2 2
1

:—(lx—isill(4.\‘)]+c
412 8

:lx—%sirl(4,\‘)+c

Solution 2
In this solution we will use the half angle formula to help simplify the integral as follows.

-9 ) . 2
Ism XCos xa’x:j(smxcosx) dx

:H%sm(zx)f dx

= ijsin2 (2x)dx

Now, we use the double angle formula for sine to reduce to an integral that we can do.
-2 2 1 1 A
Ism xXcos” xdx :§jl—cas(4x)dx

1

:§x—$sin(4,\‘)+c

Sometimes in the process of reducing integrals in which both exponents are even we will run
across products of sine and cosine in which the arguments are different. These will require one of
the following formulas to reduce the products to integrals that we can do.

sina cos 3 :%[Sill(a—ﬁ)+5ill(a+ﬂ)]
sina sin :%[Cos(a—ﬁ)—COS(Cerﬁ)]

cosa cos 3 zé[cos(a—ﬁ)+cos(a+ﬁ)]

Example 4 Evaluate the following integral.
jcos (15x)cos(4x)dx

Solution
This integral requires the last formula listed above.

J.cos(ISx)cos(ilx)dx = %jcos(l 1x)+cos (19x)dx

— %{ﬁsm(l 1x)+%sin(l9x)}+c



It’s now time to look at integrals that involve products of secants and tangents.
This time, let’s do a little analysis of the possibilities before we just jump into
examples. The general integral will be,

jsec” xtan” xdx (3)

The first thing to notice is that we can easily convert even powers of secants to tangents and even
powers of tangents to secants by using a formula similar to (1). In fact, the formula can be
derived from (1) so let’s do that.

sin" x+cos x=1

-2 2 .
sy cos X 1
+

2 2 2
COS"X C€OS" X COS X
2 2
tan" x+1=sec” x (4)

Now, we're going to want to deal with (3) sinularly to how we dealt with (2). We’ll want to
evenfually use one of the following substitutions.

U =tanx du = sec” xdx

i =secx du = sec x tan x dx
Example 5 Evaluate the following integral.

9 5
jsec xtan’ xdx

Solution
First note that since the exponent on the secant isn’t even we can’t use the substitution # = tan x .
However, the exponent on the tangent is odd and we’ve got a secant in the integral and so we will

be able to use the substitution # =secx . This means stripping out a single tangent (along with a
secant) and converting the remaining tangents to secants using (4).

Here’s the work for this integral.
9 5 8 4
jsec xtan‘xdx:jsec xtan” xtan xsecxdx
8 (2. 1\?
:jsec x(sec x—l) tan xsec x dx U =secx
g 2 1\
:ju (u —1) du
12 10, 8
:ju —2u +u’ du

l
= —S‘ECB A‘——_SECH x+—se09 X+c

13



Example 6 Evaluate the following integral.
jsec4 xtan® x dx
Solution
So, in this example the exponent on the tangent is even so the substitution # = secx won’t work.
The exponent on the secant is even and so we can use the substitution # = tan x for this integral.

That means that we need to strip out two secants and convert the rest to tangents. Here 1s the
work for this integral.

jsec“ xtan® xdx = J.SGCZ xtan® xsec? x dx
4 )
= J‘(tan2 x+1)t3116 xsec” xdx i =tanx
2 1 6
:j(u +1)H du

= J.uS +u® du

9 1 7
=—tan x+—tan x+c¢
9 7
Example 7 Evaluate the following integral.
j tan x dx

Solution
To do this integral all we need to do 1s recall the definition of tangent in terms of sine and cosine
and then this integral is nothing more than a Calculus I substitution.

" sinx
j tan x dx dx U =COSX

J COSX

1
—[—du
Ju

=—In

cosx|+c rlnxy =Ilnx"

In ‘cos x

+c

In ‘sec x|+c
Example 8 Evaluate the following integral.
j tan”’ x dx

Solution
The trick to this one 1s do the following manipulation of the integrand.

jtan3 xdx = .[tan xtan® x dx
= j ‘ranx(sec2 x—l)dx

2
= j tan xsec” x dx — j tan x dx

We can now use the substitution # = tan x on the first integral and the results from the previous
example on the second integral.

The integral is then,
1
I tan® x dx = 5 tan’ x—1In ‘sec x‘ +c

Note that all odd powers of tangent (with the exception of the first power) can be integrated using
the same method we used in the previous example. For instance,

jtans xXdxy = Itans J.‘('sec2 x—l)dx = jtanB xsec’ xdxy — j tan’ x dx

10



Example 9 Evaluate the following integral.
'[ secx dx
Solution

This one isn’t too bad once you see what you’ve got to do. By itself the integral can’t be done.
However, if we manipulate the integrand as follows we can do it.

secx(secx + tanx)
jsec xdxy = dx

secx+tanx

sec’ x + tan xsec x
= dx

secx+tanx

o/

In this form we can do the integral using the substitution # = sec x + tan x. Doing this gives,

jsec xdx=1In ‘sec xX+tanx|+c¢
Example 10 Evaluate the following integral.
j sec® xdx
Solution

This one is different from any of the other integrals that we’ve done in this section. The first step
to doing this integral is to perform integration by parts using the following choices for # and dv.

U =secx dv = sec” xdx

diu = sec x tan x dx v=tanx

3 2
jsec Xdxy=secxtanx — j sec xtan” xdx

To do this integral we’ll first write the tangents in the integral in terms of secants. Again, this is
not necessarily an obvious choice but it’s what we need to do in this case.

3 2 -
jsec xdx =secxtanx— j sec x(sec X— l) dx
3
=sgecxtanx— j sec” xdx+ j sec xdx

the first integral is exactly the integral we’re being asked to evaluate with a minus sign in front.
So, add it to both sides to get,

3
2J- sec” xdy =secxtanx+ lll‘SEC xX+tanx

Finally divide by two and we’re done.

3 1
jSE‘C xdx :E(SEC l‘TElIl.l‘-Flll‘SeC x+tanx )-I—C

11



3- Integrals Involving Partial Fractions.
let’s start this section out with an integral that we can already do so we can
contrast it with the integrals that we’ll be doing in this section.

C 2x-1 "1 : ) , _
,—6dx = J —du using #=x" —x—6 and du=(2x-1)dx
X —x— u

=In

.
x° —x—6‘+c

So, if the numerator is the derivative of the denominator (or a constant multiple
of the derivative of the denominator) doing this kind of integral is fairly simple.
However, often the numerator isn’t the derivative of the denominator (or a
constant multiple). For example, consider the following integral.

dx

S
T—x—-06
This process of taking a rational expression and decomposing it into simpler rational expressions that
we can add or subtract to get the original rational expression is called partial fraction decomposition.
Many integrals involving rational expressions can be done if we first do partial fractions on the
integrand.

So, let’s do a quick review of partial fractions. We’ll start with a rational expression in the

form,
P(x)

[ 3x+11
.

f(x)=

where both P(x) and O(x) are polynomials and the degree of P(x) is smaller than the degree of
O(x). Recall that the degree of a polynomial is the largest exponent in the polynomial. Partial
fractions can only be done if the degree of the numerator is strictly less than the degree of the
denominator. That is important to remember.

So, once we’ve determined that partial fractions can be done we factor the denominator as
completely as possible. Then for each factor in the denominator we can use the following table to
determine the term(s) we pick up in the partial fraction decomposition.

Factor in Term in partial
denominator fraction decomposition
A
ax+b ;
ax +
A A, A .
(ax+b)" 4 —— k=123
ax+b  (ax+b) (ax+b)
2 Ax+B
ax~ +bx+c T hrio
ax” +bx+c
;s k Ax+ By 4,x + B, . Ax+ B, k=123
(a.\"+bx+c) a\'2+b\*+c+' ) R i~ =, k=123,
’ ? (ax +bx+c) (ax‘+bx+c)

12



There are several methods for determining the coefficients for each term and we will go over each of
those in the following examples.
Let’s start the examples by doing the integral above.
Example 1 Evaluate the following integral.
3x+11

———dx
J xT—x—-06
Solution
The first step 1s to factor the denominator as much as possible and get the form of the partial
fraction decomposition. Doing this gives.
3x+11 4 B

= -
(x=3)(x+2) x-3 «x+2

The next step is to actually add the right side back up.
3x+11  A(x+2)+B(x-3)
(x=3)(x+2) (x=3)(x+2)

Now. we need to choose 4 and B so that the numerators of these two are equal for every x. To do
this we’ll need to set the numerators equal.

3x+11=A(x+2)+B(x-3)
What we’re going to do here is to notice that the numerators must be equal for any x that we

would choose to use. In particular the numerators must be equal for x =—2 and x=3. So. let’s
plug these in and see what we get.

x=-2 5=4(0)+B(-5) =  B=-l
x=3 20=4(5)+B(0) =  A4=4
At this point there really 1sn’t a whole lot to do other than the integral.
T 3x+11 "4 1
J ————dx = — dx
x*—x—-06 Jx=3 x+2
(4 1
= dx — dx
J x—3 J x+2
=4In :\*—3‘ —In|x+ 2‘+c

There is also another integral that often shows up in these kinds of problems so we may as well
give the formula for it here since we are already on the subject.

B 1 («x
J — dx =—tan 1(—J+c
X +a a a

13



2 ,

5 —dx
J 3x7 +4x" —4x

Solution

We won’t be putting as much detail into this solution as we did in the previous example. The first

thing 1s to factor the denominator and get the form of the partial fraction decomposition.
x4 4 B C

- -
¥(x+2)(3x-2) x x+2 3x-2

The next step is to set numerators equal. If you need to actually add the right side together to get

x> +4=A(x+2)(3x—2)+Bx(3x—2)+ Cx(x+2)

As with the previous example it looks like we can just pick a few values of x and find the
constants so let’s do that.

x=0 4=A4(2)(-2) = 4=-1
x=-2 8=B(-2)(-8) = B:é
/ / 5
x=2 ﬂ:c(i](ﬁj - =22
3 9 303 16 2

Now, let’s do the integral.

2
x“+4 11 -
J ; ! - dx = [——+ 2+
3x” +4x" —4x X x+2 3x-2

[

1w
Sy

1 5
:—111‘:\"+—]n x+2‘+—ln‘3x—2|+c
2 6

Example 3 Evaluate the following integral.
J X’ —29x+5

5 dx
(x—4) (x +3)

Solution
This time the denomunator 1s already factored so let’s just jump right to the partial fraction

decomposition.

¥ —29x+5 A B Cx+D
= + >+

(x—4)"(x?+3) x—4 (x-4)

Setting numerators gives,

x2+3

N/ ‘ ;o \ L2
x*=29x+5=A(x—4)(x* +3)+B(x’ +3)+(Cx+D)(x—4)
In this case we aren’t going to be able to just pick values of x that will give us all the constants.

Therefore, we will need to work this the second (and often longer) way. The first step is to
multiply out the right side and collect all the like terms together. Doing this gives,

x*=29x+5=(A4+C)x’ +(-44+B-8C+D)x’ +(34+16C—-8D)x—124+3B +16D

In other words we will need to set the coefficients of like powers of x equal. This will give a system of
equations that can be solved.

14



X A+C=0
v’ 44+B-8C+D=1
=  A4=1B=-5.C=-1D=2

X 34+16C —8D =-29
¥': —124+43B+16D=
Now, let’s take a look at the integral.

T2 h0. - N

(x—4)"(x"+3) x—4 (x—4)" 2*+3

:J L 5.2—2“\’ = 2.
x—4 (x—4)y x 43 243

5 1 2 X
:111‘,\'—4‘+x_4 5 ‘\ +%‘+Ttan (T}

Example 4 Evaluate the following integral.

ﬁ\'}+10x2+3x+36

(x=1)(x*+4)

dx

v

Solution
Let’s first get the general form of the partial fraction decomposition.

v +10x*+3x+36 A4 Bx+C Dx+E
N/ 2 2 ‘_1+ 2 2
(x=1)(x"+4) X Xt (27 +4)

Now, set numerators equal, expand the right side and collect like terms.
x%u0f+3x+36:ALH+4f+{Bx+cnx—npﬁ+4y4Lu+Eux—n
=(A+B)x'+(C-B)x’ +(84+4B-C+D)x’ +
(-4B+4C—-D+E)x+164-4C-E

Setting coefficient equal gives the following system.

Xt A+B=0
X C-B=1
X7 84+4B-C+D=10y = A4=2B=-2.C=-1.D=1E=0
x': —4B+4C-D+E=3
X0 164-4C-E =36

15



Here’s the integral.

¥10x2+3x+36 [ 2 2x-1 &
_ —dx = —t———+ > dx
Jo(x-1)(x? +4) Ja=boxt+d (22 4a)
= 2._ 223’ - 21 - - zdx
x—1 x"+4 x +4 (,\‘2+4)

=2In

x—l‘—]n

) | _1(.\‘] 1 1
X +4‘——tan —|-== +c
2 2 2x°+4

To this point we’ve only looked at rational expressions where the degree of the
numerator was strictly less that the degree of the denominator. Of course not all
rational expressions will fit into this form and so we need to take a look at a
couple of examples where this isn’t the case.

R(x)
Q(x)

than the degree of Q(z), then one must use long division and write the rational

If a rational function

is such that the degree of R(z) is greater

function in the form

% = apr" +a12" 4 @y 1T+ an %

where now P(z) is a remainder term with the degree of P(z) less than the degree of

Q(x) and our object is to integrate each term of the above representation.

Example 5 Evaluate the following integral.
Cxt-5x% 4 6x7 18

3 2
x” —3x

dx

Solution
So, 1n this case the degree of the numerator 1s 4 and the degree of the denominator 1s 3.
Therefore, partial fractions can’t be done on this rational expression.

To fix this up we’ll need to do long division on this to get it into a form that we can deal with.
Here is the work for that.
x—2

X —3,\"1\/.\'4 —5x' + 627 —18
—(,\‘4 —3,\'3)

—2x +6x°—18
— (—2.\'3 + 6.\‘2)

—18



xf =5t 4627 -18 18

q =x—-2-
¥ 37 ¥ - 3x?
and the integral becomes,
~ 4 3 2 -
X —5x"+6x" —18 18
dx = | x—2———dx
x° —3x7 y x° —3x?
18
= |x—2dx— [ dx
J J ¥ =357

The first integral we can do easily enough and the second integral is now in a form that allows us
to do partial fractions. So, let’s get the general form of the partial fractions for the second
mtegrand.

X (x=3) -
Setting numerators equal gives us,
18=Ax(x—3)+B(x—3)+Cx’

18 4 B C
X'Z

+
X x—3

x=0 18=B(-3) = B=-6
x=3 18=C(9) = C=2
x=1 18=A(-2)+B(2)+C==24+14 = 4=-2

The integral is then,

593 16t
J\ x” + 6x lgdx‘zjl’—Zdl“_[_

3 2
x —3x Ny

dx

26 2
xr ox x-3

:lxz —2,\‘+2]n‘x‘—9—2111‘,\*—3‘+c
2 X

17



4- Integrals Involving Roots.
Example 1 Evaluate the following integral.

[ X+2 Jx

Jx—3

v

Solution
Sometimes when faced with an integral that contains a root we can use the following substitution
to sumplify the mtegral nto a form that can be easily worked with.

u=3yx-3

So, mnstead of letting « be the stuff under the radical as we often did in Calculus I we let « be the
whole radical. Now, there will be a little more work here since we will also need to know what x
is so we can substitute in for that in the numerator and so we can compute the differential, dx.
This 1s easy enough to get however. Just solve the substitution for x as follows,

x=1+3 dx = 3u’ du

Using this substitution the integral 1s now.,

o 3
uw+3)+2
J !313@711 = j3u4 +15u du
u
3 15
-2 +2112+c
3 2

515 2

:‘Z(x—i%')g +j(,\'—3)5 +c

So, sometimes, when an integral contains the root /g (x) the substitution,

u=3fg (%)

can be used to simplify the integral into a form that we can deal with.

Example 2 Evaluate the following integral.

J —2 dx
x=3Jx+10
Solution

We’ll do the same thing we did in the previous example. Here’s the substitution and the extra
work we’ll need to do to get x in terms of .

18



u=+x+10 x=u’-10 dx = 2u du

With this substitution the integral is,

2 2 ’ Au
—————dx=| ————(2u)du :J ——————du
J x=3Jx+10 . 1!2—10—31:‘( ) u* —3u—10
This integral can now be done with partial fractions.
4u 4 N b
(=5 u+2) wu-5 wu+2
Setting numerators equal gives,
4u=A(u+2)+B(u-5)
Picking value of # gives the coefficients.
8
u=-2 —8=B(-7) B=—
-
20
u=>5 20=A(7) 4=""
7
The integral 1s then.,
2 ~ 20 2
————dx = I T+ T du
J x=3Jx+10 Ju—=5 u+?2

:Qltl‘”—5|+§hl‘”+2|+c
7 7

:2—;)111‘M—5‘+2111‘m4r2‘+c
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Problems:

Sheet No. 1

5- Problems.

Integration by Parts
L. j4,\*c05(2 —3x)dx

6

()

4. [6tan™ (L)dw

5. [e2 cos(1z)d=

6. r x” cos(4x)dx

0
7. IIT Fsin(2.i*4 )dt

8. | ¥°cos(3y)dy

=

0 .
2. j (2+5:¢)e%1 dx

Evaluate each of the following integrals.

[(3t+1*)sin(21)dt

9. (4:1:3 —9x° +7x+3)e " dx
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Problems: Sheet No. 1
B-

Integrals Involving Trig Functions

Evaluate each of the following integrals.

. j sin’ (2x)cos” (2x)dx

[ —

2. jsinS(B:)coss(B:)dz

3. | cos®(2t)dt
1 [ cos® (Law)sin® (L) dow
4. | cos (Lyw)sin’ (L) dn

5. jsecﬁ (3y)tan®(3y)dy

6. j tan” (6x)sec’® (6x)dx
7. j tan’ (z)sec’ (z)d=

8. jcos(Br)sin[Br)dr
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Problems: Sheet No. 1
C-

Partial Fractions

Evaluate each of the following integrals.

4_
S S—
Jx?+5x—14

8 —3f
J 102 +13¢r—3

L2

dt

~0 o
W+ 7w

ah
J_ (w+2)(w=1)(w—4)

1-'?

(ad

. g
4. 5 - dx
J 3x +7x" +4x

4 32
5. 37+l —d-=

Jo(z+1)(=z=5)

o [l
x” —9x°
2 +2z2+3
7I et d=
(:—6)(:2+4)

84r+612—127 P
(37 +4)(#* +7)
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Problems: Sheet No. 1

D-

Integrals Involving Roots

Evaluate each of the following integrals.

T dx
J 2++4x—-4

o

. |
dw
J w4+ 24Jl-w+2

-2

. dt
Jt=3J2t—4+2

fad
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Integrand.

Comparison Test for
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6- Improper Integrals.
A- Infinite Interval.
In this kind of integral one or both of the limits of integration are infinity.
In these cases the interval of integration is said to be over an infinite
interval.
Example 1 Evaluate the following integral.
i,, dx

J1 X

Solution.

To see how we’re going to do this integral let’s think of this as an area problem. So instead of
. . . : | :
asking what the integral is, let’s instead ask what the area under f (\) =— on the interval
¥
[1,-:3‘3-) 1S.

We still aren’t able to do this, however, let’s step back a little and instead ask what the area under
f(x) is on the interval [1. r] where 7>1 and 7 1s finite. This is a problem that we can do.

AT .
A, :J l, a’x:—l

1 X X

f -
oL
1 f

Now. we can get the area under f(x) on [l, ) simply by taking the limit of 4, as 7 goes to
mfinity.
: : l
A=lm4, = 11111(1—— =1
t—o f—m r
This is then how we will do the integral itself.

o l - . l
[ —5dx = 11111J —dx

1 X r—x 1 X

= lim(—i]
t—a X )

= lim(l —1] =1
r—x f

Let’s now get some definitions out of the way. We will call these integrals convergent if the
associated limit exists and is a finite number (7.e. it’s not plus or minus infinity) and divergent if
the associated limit either doesn’t exist or is (plus or minus) infinity.

o/

f

Let’s now formalize up the method for dealing with infinite intervals. There are essentially three
cases that we’ll need to look at.

t
1. If j f (x)dx exists for every 7 > a then,

[ 7 ()as=tm [ ()

provided the limit exists and 1s finite.
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2. If j x d*: exists for every 7 < b then,

j_:f(x \—11111I f(x)dx

f——

provided the limits exists and 1s finite.

3. Ifj f(x)dx and j (x)dx are both convergent then,

jfxdrjfxdr+j f(x)dx

Example 2 Determine if the following integral is convergent or divergent and if it’s convergent

find its value.
w l
[ —dx
1 X

e

Solution
So, the first thing we do 1s convert the integral to a limit.

[ ld:c—lhn' ldx

1 X =o)X

e

Now, do the integral and the Iimuit.
A D

J —d\—lunhl(,\)
| X t—>m

= lilll(lll(r)—hll)

f—

— o0

So, the limit 1s infinite and so the itegral 1s divergent.
Fact
If a >0 then

1s convergent if p >1 and divergentif p <1.
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Example 3 Determine if the following integral is convergent or divergent. If it is convergent
find its value.

0
|
-
v —0 3 - ,\‘
Solution

There really isn’t much to do with these problems once you know how to do them. We’ll convert

the integral to a limit/integral pair, evaluate the integral and then the limit.
a0

0 )
1 ) 1
[ ———dx=1lm J —d~x
J xN3—x === ). \J3—x

= lim -2~/3—x ’
f—»—00 I

= lim (—Z\E +24/3 —r)
f——x

= 2f3+w
= a0
So, the limit 1s infinite and so this integral 1s divergent.

Example 4 Determine if the following integral 1s convergent or divergent. If it is convergent
find 1ts value.

.[ xe ' dx
—o0

Solution
In this case we’ve got infinities in both limits and so we’ll need to split the integral up into two

separate integrals. We can split the integral up at any point. so let’s choose a =0 since this will
be a convenient point for the evaluation process. The integral is then,

aw 2 0 2 o _.2
'[ xe " dx:j xe ™" dx+J‘0 xe ' dx
—m

—00
We’ve now got to look at each of the individual limits.

0o _.2 _ o _2
j xe " dx= 11111'[ xe " dx
-0 f

t——w

= lim (—ie_‘T2 J
t——m 2

. ( 1 1 2 J
=lm| ——+—e
f——x 2 2

0

So, the first integral is convergent. Note that this does NOT mean that the second integral will
also be convergent. So. let’s take a look at that one.

Y] .2 . t 42
I xe " dx:lunj xe ' dx
0

t—m v 0
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= lim ( — l e-_‘T2 J
=0 2

. 1 o '1]
=lim| ——e "’ +—
2

t—oo

0

This integral is convergent and so since they are both convergent the integral we were actually
asked to deal with 1s also convergent and its value 1s,
o 2 0 2 o© 42 l l
j xe dxzj xe a’x+f xe 'l dy=——+—=0
—0 —a0 0 2 2

Example 5 Determine if the following integral is convergent or divergent. If it 1s convergent
find its value.

o

j sin x dx
|

£

Solution
First convert to a limit.

oo Tt
I sin xdx = lim j SN X dx
-2 = & —

t

— }E}g(—cos x)

=lim(cos2—cost)
f—>0

This limit doesn’t exist and so the integral 1s divergent.

B- _Discontinuous Integrand.

We now need to look at the second type of improper integrals that we’ll be
looking at in this section. These are integrals that have discontinuous integrands.
The process here is basically the same with one subtle difference. Here are the
general cases that we’ll look at for these integrals.

1. If f (\) 1s continuous on the interval [a,b) and not continuous at x =5 then,

Lbf(x)dx: hlnj:f(«\‘)dx

t—=b
provided the limit exists and is finite. Note as well that we do need to use a left hand
limit here since the interval of integration is entirely on the left side of the upper limit.

2. It f (1) 1s continuous on the interval (a,b] and not continuous at x = g then,

[ (x)dx=tm [ f(x)dx

provided the limit exists and is finite. In this case we need to use a right hand limit here
since the interval of integration is entirely on the right side of the lower limit.
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3. If f(x) is not continuous at x = ¢ where a <c <b and jcf(x)dx and j bf(x)dx

are both convergent then,
b c b
Lf(x)dx: Lf(x)derL f(x)dx

As with the infinite interval case this requires BOTH of the integrals to be convergent in
order for this integral to also be convergent. If either of the two integrals 1s divergent
then so 1s this integral.

4. If f(x) is not continuous at x = gand x = b and if rf(x)dx and jbf(x)dx are

both convergent then.

jjf(x)dx: J-:f(x)derjjf(x)dx

Where ¢ is any number. Again, this requires BOTH of the integrals to be convergent in
order for this integral to also be convergent.

Example 6 Determine if the following integral is convergent or divergent. If it 1s convergent

find its value.
~3

|

| dx
J0 3—x

Solution

The problem point is the upper limit so we are in the first case above.
~3 ; ~ T
1

J ————dxy=lm
0

1
At s
=lim (—2\3 3— x]

=37

dx

0
= lim (2\5 — 2\/?7—1*)

=37

23

The limit exists and 1s finite and so the integral converges and the integral’s value is 243

Example 7 Determine if the following integral is convergent or divergent. If it is convergent
find its value.
a3 .
1
I —dx

J -2 .X3

Solution
This integrand is not continuous at x =0 and so we’ll need to split the integral up at that point.

3 A0 - a3
1 1 |
[. —de :J —3d.:\'+ I —de

X X 0 X

v
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Now we need to look at each of these integrals and see if they are convergent.

0 ot
[ de = lim I Lsdx

3 —
X =0" ) Hx
f
: 1
=lm| —
=07 2x° 5

. ( 1 1}
=lim| ——+—
130 2t 8
— —on

At this poimnt we're done. One of the integrals is divergent that means the integral that we were
asked to look at 1s divergent. We don’t even need to bother with the second integral.

e

Example 8 Determine if the following integral is convergent or divergent. If it is convergent
find its value.
nw
1
I —dx

Jo X7

Solution

This is an integral over an infinite interval that also contains a discontinuous integrand. To do
this integral we’ll need to split it up into two integrals. We can split it up anywhere, but pick a
value that will be convenient for evaluation purposes.

o0

-~ 1 ]
| i,dx: [ %dx+ [ ijdx
<0 o

X~ JoX 1 X

In order for the integral in the example to be convergent we will need BOTH of these to be
convergent. If one or both are divergent then the whole integral will also be divergent.

We know that the second integral is convergent by the fact given in the infinite interval portion
above. So, all we need to do is check the first integral.

| (1
[ —2dx—11111[ de

0X =0 ), X

1 1
=lim| ——
t—0" x|,

= lim[—l +lJ
t—0" t

= o0
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7- Comparison Test for Improper Integrals.

Now that we’ve seen how to actually compute improper integrals we need to
address one more topic about them. Often we aren’t concerned with the actual
value of these integrals. Instead we might only be interested in whether the
integral is convergent or divergent. Also, there will be some integrals that we
simply won’t be able to integrate and yet we would still like to know if they
converge or diverge.

To deal with this we’ve got a test for convergence or divergence that we can use
to help us answer the question of convergence for an improper integral.

Comparison Test
If f(x)=g(x)=0 onthe interval [a.0) then,

LI [ f£(x)dx converges then so does ) o(x)dx.
J. /() !

2. If J-w g (x)dx diverges then so does j f(x)dx.

Note that if you think in terms of area the Comparison Test makes a lot of sense. If f(x) is

larger than g (x) then the area under £ (x) must also be larger than the area under g (x).

@ p
So, if the area under the larger function is finite (7.e. j f (x)dx converges) then the area under

a

w
the smaller function must also be finite (i.e. _‘. g (\) dx converges). Likewise, if the area under
a
w
the smaller function is infinite (i.e. J g (\) dx diverges) then the area under the larger function
a

must also be infinite (i.e. j f(x)dx diverges).

Example 1 Determine if the following integral is convergent or divergent.
o 0D »

cos” x
| —dx

X

o 2

Solution.

So, 1t seems like 1t would be nice to have some i1dea as to whether the integral converges or
diverges ahead of time so we will know whether we will need to look for a larger (and
convergent) function or a smaller (and divergent) function.

Therefore, it seems likely that the denominator will determine the
convergence/divergence of this integral and we know that
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Py s I
I
—dx

J 2 X
converges since p = 2> 1 by the fact in the previous section. So let’s guess that this integral will
converge.

So we now know that we need to find a function that is larger than
cos’ x

v
and also converges. Making a fraction larger is actually a fairly simple process. We can either
make the numerator larger or we can make the denominator smaller. In this case we can’t do a lot

about the denominator. However we can use the fact that 0 < cos” x <1 to make the numerator
larger (i.e. we’ll replace the cosine with something we know to be larger, namely 1). So,

2
cos"x 1
2 < 2
X x
Now, as we’ve already noted
1
| 5 dx
J2 X
converges and so by the Comparison Test we know that
"“cos” x
[Fex,,
Ja2 X

must also converge.
Example 2 Determine if the following integral is convergent or divergent.
e
J —dx
3 X+e
Solution

Let’s first take a guess about the convergence of this integral. As noted after the fact in the last
section about

The question then is which one to drop? Let’s first drop the exponential. Doing this gives,
1 |
X < _
x+e  x

[idx
J3 X

diverges by the fact. We’ve got a larger function that is divergent. This doesn’t say anything
about the smaller function. Therefore, we chose the wrong one to drop.

This 1s a problem however, since

Let’s try it again and this time let’s drop the x.
1 |

Also,
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© . t
L e dxy = 11111Le T dx

f—>0

— lim ( e e )
f—»0

-3
=

a0
So, L e dx is convergent. Therefore, by the Comparison test

L H &) ;
|
[
3 X+e

Example 3 Determine if the following integral 1s convergent or divergent.

a0
|
[ —_rdx
3 X—e

v/

1s also convergent.

Solution

This 1s where the second change will come into play. As before we know that both x and the
exponential are positive. However, this time since we are subtracting the exponential from the x
if we were to drop the exponential the denominator will become larger and so the fraction will
become smaller. In other words,

and we know that

[ ldx
3 X

e

diverges and so by the Comparison Test we know that

[ 1_ dx
J3 xXx—e *

must also diverge.

Example 4 Determine if the following integral is convergent or divergent.
"7 1+3sin* (2x)

Jio W

Iy

Solution

Therefore, since the exponent on the denominator is less than 1 we can guess that the integral will
probably diverge. We will need a smaller function that also diverges.
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We know that 0 <sin* (2,\‘) <1. In particular, this term is positive and so if we drop it from the

numerator the numerator will get smaller. This gives,

1+3sin? (2x) 1
s > R
Jx Jx
and
e
—=dx
| &
diverges so by the Comparison Test
"1+ 3sin* (2x
I (2x) .
Joo

also diverges.
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Problems: Sheet No. 2
8- Problems.

Improper Integrals

Determine if each of the following integrals converge or diverge. If the integral converges
determine its value.

1. j:(1+2x)e_x dx

)

jo (1+2x)e ™" dx

—0

a1 1
Js10+2-

4w

N
1
=}
(@)
|
=
S

9
6. I g d-z
> (1-32)
-4 Problems:
X Sheet No. 2
7. | ——dx
Jo X7 —
Comparison Test for Improper Integrals
" 61 t-’3 Use the Comparison Test to determine if the following integrals converge
8 ——dw
4 1)\ I
! —ﬂ:(‘”’ +J') l 3 d;\.
J1 X +1
0. 5 d:‘.’ = S_1
Ji1 x"+x-6 3 -
re oy
. e’ Ja ¥
10. — dx
o © |
—© 4 ——d-
1 I 42z
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Applications of Integrals

A 4

Surface Area.

Y

Parametric Equations and Curves.

Tangents with Parametric Equations.

Applications
of Integrals

A 4

Arc Length with Parametric Equations.

v

Surface Area with Parametric Equations.

Problems.

v

1- Applications of Integrals.
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A- Arc Length.

We want to determine the length of the continuous function y = f(x) on the interval [a,b] :

We’ll also need to assume that the derivative 1s continuous on [a__ b] .

Initially we’ll need to estimate the length of the curve. We’ll do this by dividing the interval up
into » equal subintervals each of width Ax and we’ll denote the point on the curve at each point
by P;. We can then approximate the curve by a series of straight lines connecting the points.
Here is a sketch of this situation for n =9 .

¥

By

e

O =============

Now denote the length of each of these lme segments by |P_ P;‘ and the length of the curve will

then be approximately,

PP

Ltzn:
i=l

and we can get the exact length by taking » larger and larger. In other words, the exact length
will be,

L=lm Z

Now, let’s get a better grasp on the length of each of these line segments. First, on each segment
let’s define Ay, =y, —y._, = f (x{. ) —f ("‘}—1 ) We can then compute directly the length of the

line segments as follows.

LB

bl 2
Ax” + Ay

Ty B
- \/( X=Xy ) (o ) -

By the Mean Value Theorem we know that on the interval [v‘}'—1 s “}] there is a point \? so that,
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*

f(‘x:')_f(xi—l ) = f!(xf )(“Ti —Xia )
Therefore, the length can now be written as,
B, RB|= \/( X — X )2 + (,}‘}- — Via )2
= \/ﬂxz + [f'(xf)}j Ax?
- \/1 +[f’(:r:)]2 Ax

Therefore, the length can now be written as,

Py B = =0+ (3= 3)

— \/A,\'z +[f'(x:)]2 Ax?

The exact length of the curve is then,

n
L =lim E
n—>»o0 f:l_

= linli NIES [f'(,\? )T Ax
A

The exact length of the curve is then,

n
L=lm>Y |P, P
n—»0 Py

Py R

> [
o i=1

However, using the definition of the definite integral, this i1s nothing more than,

L :fjﬂllJr[f’(x) ? dx

A slightly more convenient notation (in my opinion anyway) is the following.




In a similar fashion we can also derive a formula for x=h ( h% ) on [c, d ] . This formula is,

Arc Length Formula(s)

where,

: , T
Example 1 Determine the length of y =In(secx) between 0 <x < —.

Solution
In this case we’ll need to use the first ds since the function is in the form y = f/(x). So, let’s get
the derivative out of the way.

2
dy secxtanx dy 2
- = —tanx — | =tan" x
dx secy dx

Let’s also get the root out of the way since there is often simplification that can be done and
there’s no reason to do that inside the integral.

2
1+(d} ) :\/l+t3112 X :\/sec2 X :‘secx‘ =secx

»
Note that we could drop the absolute value bars here since secant is positive in the range given.

The arc length 1s then,

Fa
L= .[04 sec xdx
x
4

= lll‘SEC x+tanx :

:111(\/§+1)
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3

Example 2 Determine the length of x==(y—1)2 between 1 <y <4.

W | I

Solution
Let’s compute the derivative and the root.

dx

1
dy (v=1)

As you can see keeping the function in the form x = /() is going to lead to a very easy

integral. To see what would happen if we tried to work with the function in the form y = f (\)

see the next example.

Let’s get the length.

Example 3 Redo the previous example using the function in the form y = f(x) instead.

Solution
In this case the function and its derivative would be,

2
3x 13 . day 3x )3
+1 — =

dx 2

J,-‘ =

The root 1n the arc length formula would then be.

All the simplification work above was just to put the root into a form that will allow us to do the
mtegral.

Now, before we write down the integral we’ll also need to determine the limits. This particular
ds requires x limits of integration and we’ve got v limits. They are easy enough to get however.
Since we know x as a function of y all we need to do is plug in the original y limits of integration
and get the x limits of integration. Doing this gives,

3
05,\-5%(3)5
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Not easy limits to deal with, but there they are.

Let’s now write down the integral that will give the length.

2.2
-'5(3]: 3

(3) +1
I

(5)

L= dx

0

That’s a really unpleasant looking integral. It can be evaluated however using the following

substitution.
2 1
3x )3 3x) 3
H—[—\j +1 du—( \J dx
2 2
x=0 = u=1
2. 3
ng(g)z = u=4

Using this substitution the integral becomes,

L= _[4\/;(2’”
1

4
3
23
=—u?
14
3
So, we got the same answer as in the previous example. Although that shouldn’t really be all that
surprising since we were dealing with the same curve.

1

. 1 . 1 : .
Example 4 Determine the length of x = 5 y* for 0 <x <—. Assume that y is positive.

(8]

Solution
We’ll use the second ds for this one as the function is already in the correct form for that one.
Also. the other ds would again lead to a particularly difficult integral. The derivative and root

will then be,

dx
dy
Before writing down the length notice that we were given x limits and we will need y limits for
this ds. With the assumption that y is positive these are easy enough to get. All we need to do is
plug x into our equation and solve for y. Doing this gives,
O=y=l

y =

The integral for the arc length is then,
17 5
L= _[0 I+ yv-dy

This integral will require the following trig substitution.

y=tan® dy = sec’ 8de
y=0 = 0=tané — =0
y=1 = l=tan @ — 52%
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\/1 +y2 = \/1+‘ran2 g = \Xsecz 0= |sec 6?‘ =secl
The length 1s then.

L :jzsec3 6deo
0

i

- %(sec@tan(ﬁr 111‘sec6'+tan 6‘|) )

0
= E(\EHH(H\E))
B- Surface Area.
The surface area of a frustum 1s given by,
A=2xrl
where,
= é{fﬁ +15) 1, =radius of right end

r, = radius of left end

and / 1s the length of the slant of the frustum.

For the frustum on the mterval [x}._l. xl.] we have,
n=r1(x)
= f (%)

[ = ‘P; P| (length of the line segment connecting P, and P_ )

We know from the previous section that,

i— i

p 2
- * *® . B .
I+ [ S )J Ax where x; 1s some point 1n [x‘_._l,x‘_.]

Before writing down the formula for the surface area we are going to assume that Ax 1is “small”
and since £ (x) is continuous we can then assume that,

fx) = f(x) and Flx)~ f(x))

So, the surface area of the frustum on the mterval [.,\I 152 I] 1s approximately,
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<27 f (3 )1+ [ /()]
The surface area of the whole solid is then approximately,
s2 Y 2mf ()1 £1(x)] A
i=1

and we can get the exact surface area by taking the limit as » goes to infinity.

5= 113;2 27 f (5 )1+ /()] ax
- "|":2;rf(.\')1/l+ (7 (x)] ax

If we wanted to we could also derive a similar formula for rotating x =/ (1) on [c, d ] about the

v-axis. This would give the following formula.

S = J".dsz}? (¥)y/1 +[h'(y)]2 dy

Surface Area Formulas

S= .[2.?1' vds rotation about x —axis
S = jZﬂ'x ds rotation about y —axis
where,
v\
ds = 1+(—'J dx ify=f(x),a<x<bh
dx
2
ds = 1+(Z:—'\} dv ifx=h(y),c<y<d
y

Example 1 Determine the surface area of the solid obtained by rotating y =+/9— X
—2 < x < 2 about the x-axis.

Solution
The formula that we’ll be using here is,

S= I2ﬂ'}" ds

Let’s first get the derivative and the root taken care of.

YD _ Lo w)7(car)=

e 1
dx 2 (9_;\-2)2
- B 9 3
) No-x* o2
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Here’s the integral for the surface area,

There 1s a problem however. The dx means that we shouldn’t have any y’s in the mtegral. So,
before evaluating the integral we’ll need to substitute in for y as well.

The surface area is then,

? 3
S= [ 2749 —x? 770’,\*

-2 0 —x°

e

2
=| 6xdx
-2

=24r

Example 2 Determine the surface area of the solid obtained by rotating y = Ix . 1< v=<2
about the y-axis. Use both ds’s to compute the surface area.

Solution

Note that we’ve been given the function set up for the first ds and limits that work for the second
ds.

Solution 1
This solution will use the first ds listed above. We’ll start with the derivative and root.

o1 2
ﬁ p— i ;‘:
dx 3

4 4
Ox? +1 \/9,\‘3 +1
4
9x3 3x

|

We’ll also need to get new limits. That isn’t too bad however. All we need to do 1s plug in the
given y’s mto our equation and solve to get that the range of x’s 1s 1 < x <8 . The integral for the

surface area is then,
. 8 i
VOx3 +1

S=| 2ax———dx

) 3x

s 1[4
:2—E| V9x? +1dx
3 J1

(PSR
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Using the substitution
4 1

u=9x%+1 du =12x3 dx
the integral becomes,

T pl145
S :ELO \/;dn

3145
I 3
=—1"
27 i
[ 3 3
=— 1452 -10% [=199.48
27

Solution 2
This time we’ll use the second ds. So, we’ll first need to solve the equation for x. We’ll also go
ahead and get the derivative and root while we’re at it.

The surface area is then,

2
S = [ 27x\1+9y* dy

We used the original y limits this time because we picked up a dv from the ds. Also note that the
presence of the dv means that this time, unlike the first solution, we’ll need to substitute in for the

x. Doing that gives,
3 3 N o 4
S—jl 2ry 149y dy u=1+9y

T pl45
:E . \/;a’u

' 3 3
= 11452 102 | =199.48
27

Note that after the substitution the integral was identical to the first solution and so the work was
skipped.
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2- Parametric Equations and Curves.
To this point (in both Calculus T and Calculus IT) we’ve looked almost exclusively at functions in
the form y = f(x) or x=/(y) and almost all of the formulas that we’ve developed require

that functions be in one of these two forms. The problem is that not all curves or equations that
we’d like to look at fall easily into this form.

Take, for example, a circle. It is easy enough to write down the equation of a circle centered at
the origin with radius 7.

2 2 2
XT+y =r

However, we will never be able to write the equation of a circle down as a single equation in
either of the forms above. Sure we can solve for x or v as the following two formulas show

2 2
y=3r — ¥’ X = J_m/rz -y

but there are in fact two functions in each of these. Each formula gives a portion of the circle.

y=~r’—x*  (top) x=yr’=»"  (right side)

2

y=—r’—x’ (bottom) x=—r’—y" (left side)
There are also a great many curves out there that we can’t even write down as a single equation in
terms of only x and v. So, to deal with some of these problems we introduce parametric
equations. Instead of defining y in terms of x (y = f(x)) orx in terms of v (x =/h(y)) we
define both x and v in terms of a third variable called a parameter as follows,

x=f(1) v=g(t)

Each value of 1 defines a point (x,y)=(/(#).g(#)) that we can plot. The collection of points

that we get by letting 7 be all possible values is the graph of the parametric equations and 1s called
the parametric curve.
Example 1 Sketch the parametric curve for the following set of parametric equations.
x=t>+t y=2-1
Solution

At this point our only option for sketching a parametric curve is to pick values of 7, plug them into
the parametric equations and then plot the points. So. let’s plug in some #’s.

I X V

-2 2 |5
-1 0 |-3
cIEiE

We have one more idea to discuss before we actually sketch the curve. Parametric curves have a

direction of motion. The direction of motion is given by increasing t. So, when plotting parametric
curves we also include arrows that show the direction of motion.
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Here i1s the sketch of this parametric curve.

¥
1+ e o
— t=1
-
1 — —-‘_-T 1 | x
— 1 2
a1
«
=—1l4 7L
i 5# 2

|t=-1
3%
4l T <

— ) 3

=5k R N

Example 2 Sketch the parametric curve for the following set of parametric equations.
x=1 +t y=2t-1 —l<r<l
Solution
Note that the only difference here is the presence of the limits on 7. All these limits do 1s tell us

that we can’t take any value of ¢ outside of this range. Therefore, the parametric curve will only
be a portion of the curve above. Here is the parametric curve for this example.

¥
1+ .
~ o t=1
- -1 \ 1 x
!_,.-"--' 1 2
14
Ale=1
«
E=-g¢-2F
»
Y O -1

Example 3 Sketch the parametric curve for the following set of parametric equations. Clearly indicate
direction of motion.

x =S5cost y=2sint 0<t<2rm
Solution
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An alternate method that we could have used here was to solve the two parametric equations for
sine and cosine as follows,

J . Vv
cosf=— smi=—
5 2

Then, recall the trig identity we used above and these new equation we get,

2 N2 L2
1:c052r+sin2r=(%J +(l] _x Ly
5 2 25 4

So, here 1s a table of values for this set of parametric equations.

t x|y
0 510
Z 102
T S0
% 01-2
27 | 510

It looks like we are moving in a counter-clockwise direction about the ellipse and it also looks
like we’ll make exactly one complete trace of the ellipse in the range given.

Here is a sketch of the parametric curve.

¥ (==

YO
1k ~

£=ﬂ'."/ \-£=0,2¢?T
Aé PR R R SR B PR R B PR x
5 -4 -3 2 - 1 2 3 4
" i .
—_— e

TR

f=2=

]

Example 4

The path of a particle is given by the following set of parametric equations.
x=3cos(2t) y =1+cos’(2¢)

Completely describe the path of this particle. Do this by sketching the path, determining limits on

x and y and giving a range of #’s for which the path will be traced out exactly once (provide it

traces out more than once of course).

Solution
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Eliminating the parameter this time will be a little different. We only have cosines this time and
we’ll use that to our advantage. We can solve the x equation for cosine and plug that into the
equation for y. This gives,

2 2
cos(2.f):1 v:l+(iJ — 142
3 ’ 3 9
This time we’ve got a parabola that opens upward. We also have the following limits on x and y.
—1<cos(2f)<1 —3<3cos(21)<3 —3<x<3
0<cos’(2f)<1 1<1+cos”(2f)<2 1<y<2

So, again we only trace out a portion of the curve. Here’s a set of evaluations so we can
determine a range of #’s for one trace of the curve.

t | x|y
3 ]2
Z 1ol
4
s
L1302
2
3
T1lol1
4
T | 3|2

So, it looks like the particle, again, will continuously trace out this portion of the curve and will
make one trace in the range 0 <# <% . Here is a sketch of the particle’s path with a few value of
tonit.

¥
=7 =0,
. 2+ .
~a a
~—— e
D P
ERLE
| | | | | | x
-3 -2 -1 0 1 2 3

49



3- Tangents with Parametric Equations.
In this section we want to find the tangent lines to the parametric equations given by,

x=f(1) v=gl(?)

To do this let’s first recall how to find the tangent line to y = F"(x) at x = a. Here the tangent
line 1s given by,
dy

J.-":F(G)+m(x—a). where m=— :F'(a)
»

xX=a

: . . dy :
Now. notice that if we could figure out how to get the derivative _d from the parametric
»

equations we could simply reuse this formula since we will be able to use the parametric
equations to find the x and v coordinates of the point.

So, just for a second let’s suppose that we were able to eliminate the parameter from the
parametric form and write the parametric equations in the form y = F (\) . Now, plug the

parametric equations in for x and y. Yes, it seems silly to eliminate the parameter, then
immediately put it back in, but it’s what we need to do in order to get our hands on the derivative.
Doing this gives,

g(t)=F(f(1))
Now, differentiate with respect to ¢ and notice that we’ll need to use the Chain Rule on the right
hand side.

g (N =1'(f(1) /(1)

Let’s do another change in notation. We need to be careful with our derivatives here.
Derivatives of the lower case function are with respect to 7 while derivatives of upper case
functions are with respect to x. So, to make sure that we keep this straight let’s rewrite things as
follows.

dy dx
_r - F’ ( X ) P
dt dt
At this point we should remind ourselves just what we are after. We needed a formula for d or
»

F' (\) that 1s in terms of the parametric formulas. Notice however that we can get that from the

above equation.

7

dy _ dt . dx

E_ﬂ provided driO
di
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Derivative for Parametric Equations

dx
dx . dy
__di . provided —=0
dy 4y dt
dt
Example 1 Find the tangent line(s) to the parametric curve given by
x=1 -4 y=t
at (0.4).
Solution
The first thing that we should do is find the derivative so we can get the slope of the tangent line.
dy
dy 4 2t 2
dx dx 54127 S5£ 12t
dt

At this point we ve got a small problem. The derivative is in terms of 7 and all we’ve got 1s an x-v
coordinate pair. The next step then is to determine the value(s) of 7 which will give this point.
We find these by plugging the x and y values into the parametric equations and solving for 7.

0=1—4r = (1 —4) = t=0,%2

4=t = =12
r =-2

Since we already know the x and y-coordinates of the point all that we need to do is find the slope
of the tangent line.

m= d—} - l
dx|,__, 8
The tangent line (at r = -2) 1s then,
1
=4——x
? 8
r =2
Again, all we need 1s the slope.
dy ]
m=— =—
dx|,_, 8
The tangent line (at 7 = 2) 1s then,
1
=4+—x
? 8
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A quick graph of the parametric curve will explain what is going on here.

| ] | | A A I I | |
=25 =20 -15 -10 -5 3 10 15 20 25

Horizontal Tangent for Parametric Equations

ﬁ =0, provided ﬂ =0
dit dt

Vertical tangents will occur where the derivative is not defined and so we’ll get vertical tangents
at values of 7 for which we have,

Vertical Tangent for Parametric Equations

Zs =0, provided Z =0
dt dt

Example 2 Determine the x-y coordinates of the points where the following parametric
equations will have horizontal or vertical tangents.

x=1 -3t y=3-9
Solution
We’ll first need the derivatives of the parametric equations.
dx p ' _ dy
“ =37 -3=3( 1) D _ 6t
dt dt

Horizontal Tangents
We’ll have horizontal tangents where,

6r=0 = tr=0

Now, this is the value of 7 which gives the horizontal tangents and we were asked to find the x-»
coordinates of the point. To get these we just need to plug 7 into the parametric equations.
Therefore, the only horizontal tangent will occur at the point (0.-9).

Vertical Tangents
In this case we need to solve,

3(17-1)=0 = t=+1
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The two vertical tangents will occur at the points (2.-6) and (-2.-6).

For the sake of completeness and at least partial verification here is the sketch of the parametric
curve.

-.‘lL_"'\-. - S — _‘

_-1— lDbI';_D

4- Arc Length with Parametric Equations.

In this section we will look at the arc length of the parametric curve given by,

x= (1) y=glr) ast<p

We will also be assuming that the curve is traced out exactly once as 7 increases from «to 5. We
will also need to assume that the curve 1s traced out from left to right as 7 increases. This 1s
equivalent to saying,

dx X
—2>0 for ¢ <t <
dt p

To use this we’ll also need to know that,
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| BT £
@ dt dt dt

a | dt

Now. making use of our assumption that the curve is being traced out from left to right we can
drop the absolute value bars on the derivative which will allow us to cancel the two derivatives
that are outside the square root and this gives,

Arc Length for Parametric Equations

[ &) (2] o

Notice that we could have used the second formula for ds above if we had assumed 1nstead that
dy
dt

Example 1 Determine the length of the parametric curve given by the following parametric
equations.

>0 for a<t<p

,\»:33111(;‘) ).-':3005(3‘) 0<r<2x7
Solution

So, we can use the formula we derived above. We’ll first need the following,
dx . dy .

=3cos(7) — =-3sin(r)

dt dt

The length 1s then,

:j \/93111 t)+9cos’ (1) dt
:I \/sm ()+cos’ (1) dt
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Example 2 Use the arc length formula for the following parametric equations.
x = 3sin(3¢) ¥ =3cos(3t) 0<t<27
Solution
Notice that this 1s the identical circle that we had in the previous example and so the length 1s still
6. However. for the range given we know it will trace out the curve three times instead once as

required for the formula. Despite that restriction let’s use the formula anyway and see what
happens.

In this case the derivatives are,

ﬁ:9005(3)‘) dy =—9sin(3¢)
dt dt
and the length formula gives,

L= LHJSISinZ (#)+81lcos’ () dt

2T
=| 9dt
0
=187
The arc length formula can be summarized as,
L= jds
where,
ds = ify=f(x).a<x<b
ds = ifx=h(y).csy=<d
2
ds = J dt ifx=f(t).y=g(t).a<t=<p

5- Surface Area with Parametric Equations.

In this final section of looking at calculus applications with parametric equations we will take a
look at determining the surface area of a region obtained by rotating a parametric curve about the
X Or y-axis.

We will rotate the parametric curve given by,

x=f(t) y=g(t) a<t<p
about the x or y-axis. We are going to assume that the curve 1s traced out exactly once as 7
increases from a to 4. At this point there actually isn’t all that much to do. We know that the

surface area can be found by using one of the following two formulas depending on the axis of
rotation (recall the Surface Area section of the Applications of Integrals chapter).

S= _[271' vds rotation about x — axis

S= _[271'.\' ds rotation about y —axis
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All that we need is a formula for ds to use and from the previous section we have,

dx\ (dyY
ds = (dr} +(d—:‘J dt ifx=f(t).y=gl(t), a<st<p

which 1s exactly what we need.

Example 1 Determine the surface area of the solid obtained by rotating the following
parametric curve about the x-axis.

: T
x=cos” 6 y=sin’ @ 05935
Solution
We’ll first need the derivatives of the parametric equations.
dx : dy :
= 3cos’Osind — =3sin’ @cos b
dt dt

Before plugging into the surface area formula let’s get the ds out of the way.
ds = \/9 cos’ @sin’ @ +9sin* @cos® 0 dt

=3 ‘cos fsin 9‘\/ cos’ @ +sin’ @

=3cos@siné

Notice that we could drop the absolute value bars since both sine and cosine are positive in this
range of #given.

Now let’s get the surface area and don’t forget to also plug in for the .
S = '[2;1'_1-’ ds

= 2,7:!'.'.055&113 6(3cosBsinb) db
= 673"[0E sin® @cos O db u=smé

= 671'_‘.01 u® du

67
5
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Problems: Sheet No. 3
6- Problems.

A- Arc Length.

1. Set up, but do not evaluate, an integral for the lengthof y =+/x+2 . 1<x <7 using,

. v T
a)ds=,(|1+| = | dx
(@) ds L, } X

I\

2
() ds = 1{?} dy

2. Set up, but do not evaluate, an integral for the length of x =cos(y).0<x<4 using
(@) ds =
dx
(b) ds =, |1+|— | dy
Ly ]

3. Determine the length of y =7(6+ x)% .189=y=<875.

4. Determine the length of x =4(3 + y)2 J1sy=4 .
B- Surface Area.

1. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating
x =4/ y+5 . \/E < x <3 about the y-axis using,

2

(@) ds = dx

-2

) ds= 1+ | v

2. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating
y=sin(2x) ., 0 <x <% about the x-axis using.

CTayT
ds =, |1+ = | dx
(a) ds J{d] X

X
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Problems: Sheet No. 3

3. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating
y=x" +4,1<x<35 about the given axis. You can use either ds.
(a) x-axis

(b) y-axis

4. Find the surface area of the object obtained by rotating y = 4+ 3x” , 1 <x <2 about the y-
axis.

5. Find the surface area of the object obtained by rotating y =sin(2x) . 0 <x <Z about the x-
axis.
C- Parametric Equations and Curves.

For problems 1 — 6 eliminate the parameter for the given set of parametric equations, sketch the
graph of the parametric curve and give any limits that might exist on x and y.

1. x=4-2t y=3+6t—4t

-2

x=4-2t y=3+6t-4> 0<t<3

cx=At+1 y:L t>-1

8

t+1
4. x=3sin(t) y=—4cos(t) 0<r<27
5.x=3smn(2fr) y=-4cos(2r) 0<t<27
6. x=3sin(i7) y=-4cos(dr) 0<r<2rm

For problems 7 — 11 the path of a particle is given by the set of parametric equations. Completely
describe the path of the particle. To completely describe the path of the particle you will need to
provide the following information.

(7) A sketch of the parametric curve (including direction of motion) based on the equation you
get by eliminating the parameter.

(71) Lumts on x and y.

(7ii) A range of ¢’s for a single trace of the parametric curve.
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Problems: Sheet No. 3
7. x=3-2cos(3r) y=1+4sin(3t)

8 x=4sin(+71) y=1-2cos’(47) ~52x<t<34rx
9. x:\/4+cos(;§r) y=1+1cos(57) — 487 <t<2m
10. x =2¢' y:cos(l+e”) 0<r<2

1l x=Le™ y=e"+2e -8

D- Tangents with Parametric Equations.
2

_ dy y : - : :
For problems 1 and 2 compute — and ——- for the given set of parametric equations.
dx dx
1L x=4F -+ 7t y=t'-6
2. x=e""42 y=6e" +e” —4t

For problems 3 and 4 find the equation of the tangent line(s) to the given set of parametric
equations at the given point.

3. x=2cos(3t)—4sin(3r) y=3tan(6f) at r==

4. x=1"=2-11 y=t(t-4) =3 (1-4)"+7 at (=3.7)

5. Find the values of 7 that will have horizontal or vertical tangent lines for the following set of
parametric equations.

x=1-7t' -3 y=2cos(3t)+4t

E- Area with Parametric Equations.

For problems 1 and 2 determine the area of the region below the parametric curve given by the set
of parametric equations. For each problem you may assume that each curve traces out exactly
once from right to left for the given range of 7. For these problems you should only use the given
parametric equations to determine the answer.

1. x=48 -+ y=t"+27 1<t<3

2. x 3—(:053(4*') y=4+sin(r) O0<tr<nx

Problems: Sheet No. 3
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F- Arc Length with Parametric Equations.

For problems 1 and 2 determine the length of the parametric curve given by the set of parametric
equations. For these problems you may assume that the curve traces out exactly once for the
given range of #’s.

T

3
1. x=8¢2 y=3+(8-1) 0<t<4

x=3t+1  y=4-1 -2<t<0

]

3. A particle travels along a path defined by the following set of parametric equations. Determine
the total distance the particle travels and compare this to the length of the parametric curve itself.

x=4sin(44) y=1-2cos’(41) — 527 <t <34n

For problems 4 and 5 set up. but do not evaluate, an integral that gives the length of the
parametric curve given by the set of parametric equations. For these problems you may assume
that the curve traces out exactly once for the given range of 7’s.

4. x=2+1 y=e'sin(2r) 0<r<3

5. x=cos’(21) y=sin(l-r7) —-2<r<0

G- Surface Area with Parametric Equations.

For problems1 — 3 determine the surface area of the object obtained by rotating the parametric

curve about the given axis. For these problems you may assume that the curve traces out exactly
once for the given range of r’s.

. Rotate x =3 +2¢ y=9-3t 1<t<4 about the y-axis.
2. Rotate x =9+ 2¢° yv=4 0<r<2 about the x-axis.
3. Rotate x =3cos(7t) y=>5t+2 0<t<2 about the y-axis.

For problems 4 and 5 set up. but do not evaluate. an mtegral that gives the surface area of the
object obtained by rotating the parametric curve about the given axis. For these problems you
may assume that the curve traces out exactly once for the given range of 7’s.

4. Rotate x =1+ 111(5 + rz) y=2t-2" 0<t<2 about the x-axis.

5. Rotate x =1+3¢ y=sin(2t)cos(47) 0<t<< about the y-axis.

First year/ 2" Semester - 2018-2019- Chemical and Petroleum Engineering Department
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1- Polar Coordinates

This 1is not, however, the only way to define a point in two dimensional space. Instead of moving
vertically and horizontally from the origin to get to the point we could instead go straight out of
the origin until we hit the point and then determine the angle this line makes with the positive x-
axis. We could then use the distance of the point from the origin and the amount we needed to
rotate from the positive x-axis as the coordinates of the point. This is shown in the sketch below.

A
x (r.8)
r i-};
8 ‘_} .

Coordinates in this form are called polar coordinates.

The above discussion may lead one to think that » must be a positive number. However, we also

allow r to be negative. Below is a sketch of the two points (2, %) and (—2. %) .

4

|3
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This leads to an important difference between Cartesian coordinates and polar coordinates. In
Cartesian coordinates there is exactly one set of coordinates for any given point. With polar
coordinates this isn’t true. In polar coordinates there 1s literally an infinite number of coordinates
for a given point. For instance, the following four points are all coordinates for the same point.

R

Here is a sketch of the angles used in these four sets of coordinates.

4 (5.%)
.1._3
E
sz 3
E
\. —
hJﬁ
/ 3
/!
/
/!
d

These four points only represent the coordinates of the point without rotating around the system
more than once. If we allow the angle to make as many complete rotations about the axis system
as we want then there are an infinite number of coordinates for the same point. In fact the point

(r. ) can be represented by any of the following coordinate pairs.

(r.0+27n) (—r, 0+(2n+ 1) ﬂ'), where 7 1s any integer.

Polar to Cartesian Conversion Formulas

x=rcosf y=rsiné

Converting from Cartesian 1s almost as easy. Let’s first notice the following.
2 +3? =(rcos8) +(rsin6)’
=r’cos’@+r’sin’ @
=r? (c(}s2 6 +sin’ (9] =r

This is a very useful formula that we should remember, however we are after an equation for  so
let’s take the square root of both sides. This gives,

2 2
F=AX"+y
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Note that technically we should have a plus or minus in front of the root since we know that r can
be either positive or negative. We will run with the convention of positive r here.

Getting an equation for &1s almost as simple. We’ll start with,
y rsinf

X rcosé

=tan @

Taking the inverse tangent of both sides gives,

6 =tan"’ (J— ]
\

We will need to be careful with this because inverse tangents only return values in the range
—Z% <6 <5 . Recall that there is a second possible angle and that the second angle is given by

O+

Summarizing then gives the following formulas for converting from Cartesian coordinates to
polar coordinates.

Cartesian to Polar Conversion Formulas

2 2 2 2 2
rT=x"+y r=4x"+y

6 =tan™ (J—’}
N

Example 1 Convert each of the following points into the given coordinate system.

21 ) . : :
(a) [—4_—) into Cartesian coordinates. [Solution]

(b) (-1.-1) into polar coordinates. [Solution]

Solution

2w
(a) Convert (—4.—} into Cartesian coordinates.

This conversion 1s easy enough. All we need to do 1s plug the points into the formulas.

X = _4005{2_7TJ: —4(—ijz 2
3 2

V= —45'111(2—]?) =—4 ﬁ =23

So, in Cartesian coordinates this point is (2, —2\6 ) .
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(b) Convert (-1.-1) into polar coordinates.

Let’s first get r.

Now, let’s get 6.

af -1 P
f=tan™| — |=tan” (1)==
-1 4
This is not the correct angle however. This value of #is in the first quadrant and the point we’ve
been given is in the third quadrant. As noted above we can get the correct angle by adding 7 onto
this. Therefore, the actual angle is.

Sz
4

0="1r7-=
4

So. in polar coordinates the point is (\/5 . STT) . Note as well that we could have used the first

that we got by using a negative ». In this case the point could also be written in polar coordinates
as ( —\5 , %) .

Example 2 Convert each of the following into an equation in the given coordinate system.
(a) Convert 2x—5x” =1+ ay into polar coordinates. [Solution]

(b) Convert » =—8cos @ into Cartesian coordinates. [Solution]
Solution

(a) Convert 2x—5x” =1+ xy into polar coordinates.

In this case there really isn’t much to do other than plugging in the formulas for x and v (i.e. the
Cartesian coordinates) in terms of » and & (i.e. the polar coordinates).

2(rcos@)—5(rcos 6‘)3 =1+(rcosf)(rsmé)
2rcos@—5r cos’ @ =1+r’cosBsin b

(b) Convert » =-8cos @ into Cartesian coordinates.

This one is a little trickier, but not by much. First notice that we could substitute straight for the
r. However, there is no straight substitution for the cosine that will give us only Cartesian
coordinates. If we had an » on the right along with the cosine then we could do a direct
substitution. So, if an » on the right side would be convenient let’s put one there, just don’t forget
to put one on the left side as well.

2
r°=-8rcos@

We can now make some substitutions that will convert this into Cartesian coordinates.

2 2
X +y =-8x

65



2- _Common Polar Coordinate Graphs.
Let’s identify a few of the more common graphs in polar coordinates. We’ll
also take a look at a couple of special polar graphs.

Lines
Some lines have fairly simple equations in polar coordinates.

1. =0
We can see that this is a line by converting to Cartesian coordinates as follows

0=p
a(y
tan”' [J =pf
X
Y~ tan P
.
y=(tan g)x
This is a line that goes through the origin and makes an angle of £ with the positive x-
axis. Or, in other words it is a line through the origin with slope of tan /.

2. rcos@=a
This 1s easy enough to convert to Cartesian coordinates to x =a. So, this is a vertical
line.

3. rsmé=>~h
Likewise, this converts to y = b and so 1s a horizontal lme.

37 : :
Example 3 Graph 6 =—, rcos@ =4 and rsin 6 =-3 on the same axis system.

Solution
There really 1sn’t too much to this one other than doing the graph so here it is.

5_3_J‘T ¥ recos@=4

4 ‘-""'“-.__

d
/
W

f
[ W E ]

I
|

remné=-3 2
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Circles
Let’s take a look at the equations of circles in polar coordinates.
1. r=a.
This equation is saying that no matter what angle we’ve got the distance from the origin
must be a. If vou think about it that is exactly the definition of a circle of radius a
centered at the origin.

So. this is a circle of radius a centered at the origin. This is also one of the reasons why
we might want to work in polar coordinates. The equation of a circle centered at the
origin has a very nice equation, unlike the corresponding equation in Cartesian
coordinates.

2. r=2acosé.
We looked at a specific example of one of these when we were converting equations to
Cartesian coordinates.

This 1s a circle of radius ‘a‘ and center (a.0). Note that a might be negative (as it was

in our example above) and so the absolute value bars are required on the radius. They
should not be used however on the center.

3. r=2bsing.
This 1s similar to the previous one. It is a circle of radius ‘b

and center (0.5).

4. r=2acos@+2bhsing.
This 1s a combination of the previous two and by completing the square twice it can be

shown that this is a circle of radius va> + 5> and center (a, b). In other words, this is

the general equation of a circle that isn’t centered at the origin.
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Example 4 Graph r =7, r =4cos @, and r =—7sm @ on the same axis system.

Solution
The first one is a circle of radius 7 centered at the origin. The second is a circle of radius 2

centered at (2.0). The third is a circle of radius % centered at (0,—%} . Here is the graph of the

three equations.

b

_abk /
x\__‘\\-r _6 B \J--!_'.«'
7_3_'_ T p=-7siné

Cardioids and Limacons
These can be broken up into the following three cases.

1. Cardioids: r=a+acosf and r=a+asmné.
These have a graph that 1s vaguely heart shaped and always contain the origin.

2. Limacons with an inner loop : ¥ =a +bhcosf and r =a+hbsmé with a <b.
These will have an mner loop and will always contain the origin.

3. Limacons without an inner loop : ¥ =a+bcosé and r =a+bsiné with a >b.
These do not have an inner loop and do not contain the origin.

Example 5 Graph r =5—-5smé, r=7—6c¢cos@,and r =2+4coséd .

Solution

These will all graph out once in the range 0 <& <27 . Here is a table of values for each
followed by graphs of each.

e r=5—5smé& 7 =7—6¢cosé r=2+4cos@

T 5 13 2
3
> 10 7 2
2
2 5 1 6
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F=5-531n8&
2_

r="7T—-fcos8d
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r=2+4cosé

— — —__-_-‘_—-_
3 - T~
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o lr 1"|
|"I
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| \
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| 1 - I'|.
[}
|' e \
g ™ |
\
L b 1 \ I I I |
-1/ 1 2 3 4 5 ¢
i e - |
| e f
ik
i .
1 .'II
\ /
=) A
2 /
\
3k e P
_ P
— .

3- Tangents with Polar Coordinates.

We now need to discuss some calculus topics i terms of polar coordinates.

We will start with finding tangent lines to polar curves. In this case we are going to assume that
the equation is in the form » = f(6#). With the equation in this form we can actually use the
. .. dy
equation for the derivative d
X

equations. To do this however requires us to come up with a set of parametric equations to
represent the curve. This 1s actually pretty easy to do.

we derived when we looked at tangent lines with parametric

From our work in the previous section we have the following set of conversion equations for
going from polar coordinates to Cartesian coordinates.

x=rcost y=rsmé
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Now, we’ll use the fact that we’re assuming that the equation is in the form » = f (9 ) :

Substituting this into these equations gives the following set of parametric equations (with fas

the parameter) for the curve.
x=f(6)cos

Now, we will need the following derivatives.

y=7(6)sinb

dx . L dy _ )
= '(@)cos@— f(6)sind —=f"(@)sinf+ f(6)cosO
= 1'(0)cos0- £ (0) 2 7'(0)sin6+£(0)
zﬁcosﬁ—rsinﬁ :£5i119+r0059
do de
The derivative d—‘ 1s then,
dx
Derivative with Polar Coordinates
dr .
v —smé+rcosd
v _ de
dx df‘

—cos@—rsind
do
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. : . : T
Example 1 Determine the equation of the tangent line to ¥ =3+8sm 6 at 6 = ra

Solution
We’ll first need the following derivative.

ﬁ:80056
do

. . dy
The formula for the derivative d—J becomes.
»

dy 8cos@sin b +(3+8sinb)cos b _ 16cos@sin@+3cosd

dx 8c0529—(3+85i119)si116? "~ 8cos? @—3sin6—8sin’ O

The slope of the tangent line is,

5.3
4\/54—7 11\5

}’T_ 3 5
QZE _1,__ =

2
Now, at € =% we have = 7. We’ll need to get the corresponding x-y coordinates so we can

(;r] 73 _ (;r] 7
x=7cos| — |=—— y=T7Tsm|— |=—
6 6

2 2

get the tangent line.

The tangent line is then,

7 1W3[ 73
J? :—+ X —
2 5 2

For the sake of completeness here is a graph of the curve and the tangent line.

12F

r=3+8sn8 —1——_
~ 10

(o]
I
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4- Arc Length with Polar Coordinates.
In this section we’ll look at the arc length of the curve given by,
r=£(6) a<0<p

where we also assume that the curve is traced out exactly once. Just as we did with the tangent
lines in polar coordinates we’ll first write the curve in terms of a set of parametric equations,

x=rcosf y=rsiné

= f(6)cosb = f(6)siné

and we can now use the parametric formula for finding the arc length.

We’ll need the following derivatives for these computations.
dx dy

— = f"(6)cosO— f(6)sin b — = f"(6)sinB@+ f(6)cosb
= f(8)cost—1 () =1 (0)sino+ £ (0)c
zﬁcosé?—rsinﬂ :isi119+rcost9
de de

We’ll need the following for our ds.
2 2 2 2
(ﬂ] +(d—1} —(d—;cosﬁ—rsm@J +(isin€+rc055}
de deo dé de

dr 5 dr : 5 . 5
= % coSs 9—2?‘%305851119+r sm” 6

dr\ dr
J{—?J sin’ 6+ 2;‘—Icos(95i119+ ¥ cos’ @
de de

d Y . 5 .9 ' 2 .2
= (—IJ (cos™ @+sm” 9)+ r? (cos™ 0+sm” 5)
de
dr Y’
()
de
The arc length formula for polar coordinates is then,
L= jds
where,
ds=,[r" + [ d—}] do
de
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Example 1 Determine the lengthof r =6 0<6<1.

Solution
Okay, let’s just jump straight into the formula since this 1s a fairly simple function.

sz;\/92+1 46

We’ll need to use a trig substitution here.

@ =tan x do = sec” xdx
6=0 0=tanx x=0
_ _ T
6 =1 l=tanx y==
_4
\/92 +1= \/‘[.21112 x+1 :\/sec2 X = ‘sec x| =secx

The arc length 1s then,

L=[\o*+1d6
:jise@xdx
0

T
1 4
= —(sec xtanx+In ‘SEC X+ tanx

)

0

(ﬁ+1n(l+\5))

_1
2
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5- Area Polar Coordinates.

The equation of a curve in polar coordinates is given by » = f(#). To find the
arca bounded by the curve r = f (8), the rays # = o and ¢ = 3, divide the angle 58— o
into n-parts by defining A9 = =2 and then defining the rays

g =a, 01 =09+ A0, ..., 0; =0;_1 + A0, n—9n1+A9—5

The area between the rays 8 = 6,_; , § = 6; and the curve r = f(6), illustrated in the

figure below, is approximated by a circular sector with area element

1 1
dA; = 5-1*?&6'3- =3 2(6;) Ab;

where Af; =60; — 6,_, and r; = f(¢;). A summation of these clements of arca between

the rays 8 = a and 9 = 3 gives the approximate area

i(ﬂ‘li:i r2Af; = Z 2(
i=1 i=1
r=i(a)

Area of circular sector=1»>a6

Approximation of area by summation of circular sectors.

This approximation gets better as A#; gets smaller. Using the fundamental

theorem of integral calculus, it can be shown that in the limit as n — o, the equation

1 .
defines the element of area dA = §-r2 df. A summation of these elements of

B 1 [P 1 [P
Polar Area:/ dA:E/ -erQ:E/ r2(0) do

area gives
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Example 1. Find the area bounded by the polar curve
r=2rgcosf for0<6 <.
Solution
One finds that the polar curve r = 2rgcosé, for 0 < 6 < . is a circle of radius ro
which has its center at the point (rg,0) in polar coordinates. Using the area formula

given by equation (3.121) one obtains

— 2

Area = % / (2rgcosf)? df = 2?’3/ cos? 0 df = 'r’%/ (cos 20+ 1) df = r? {Sm 20 - 9}
0 0 0

2 0

So, that’s how we determine areas that are enclosed by a single curve, but what about situations
like the following sketch were we want to find the area between two curves.

=6

In this case we can use the above formula to find the area enclosed by both and then the actual
area 1s the difference between the two. The formula for this is,

Example 2 Determine the area that lies inside » =3+ 2sm & and outside » =2.

Solution
Here is a sketch of the region that we are after.

F=3+23n8
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To determine this area we’ll need to know the values of @for which the two curves intersect. We
can determine these points by setting the two equations and solving.

3+2sma=2
5;1'116':—l = 9:7—Hﬁ“—ﬁ
2 6 6
Here is a sketch of the figure with these angles added.
F=13+2:8n8
4
° r=2 ar e

Note as well here that we also acknowledged that another representation for the angle 1% is

— 2% This is important for this problem. In order to use the formula above the area must be

enclosed as we increase from the smaller to larger angle. So, if we use X to 1% we will not
enclose the shaded area, instead we will enclose the bottom most of the three regions. However if

we use the angles —Z to X we will enclose the area that we’re after.

So, the area is then,
T

b 1 . 2 2
EE((3+25,-uue:#) ~(2)")de

6

Tx

_|° l(5+125i11t9+45in2 9)0’5

6

Tx

= 61(7+1zsma—2cos(29))d9

6

i
:%(?Q—IZCOSQ—sin(Zﬁ)) i
B
NS BT g
2 3
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Example 3 Determine the area of the region outside 7 =3+2sin 6 and inside =2

Solution
This time we’re looking for the following region.

r=3+2sné&

_ix __ & 7
g_ﬁ .?‘_2 9_ 6

So, this is the region that we get by using the limits % to 1% . The area for this region is,

11w
"6 1y : 2
A= 5((2)2—(3+231116?) )de

- ' ¥(757'l2 sin @ — 4sin” 9)&’9

= | .~ =(-7-12sin6+2cos(26))do

Uiz
6

:l'—wﬂzcosmsm 20
2

T

6

13 77

=———=2.196
2 3

Example 4 Determine the area that is inside both » =3+2smé and r=2.

Solution
Here 1s the sketch for this example.
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r=3+2s5n8

117

- L5
67 f

In this case however, that is not a major problem. There are two ways to do get the area in this
problem. We’ll take a look at both of them.

Solution 1
In this case let’s notice that the circle is divided up into two portions and we’re after the upper
portion. Also notice that we found the area of the lower portion in Example 3. Therefore, the
area is,
Area = Area of Circle — Area from Example 3
2 .
=7( 2) —2.196
=10.370

Area = Area of Limacon — Area from Example 2

2 -
— [ L(3+2sin6) do-24.187
Jo 2
2T ].
= | —(9+12sin@+4sin’0)d6—24.187
Jo 2
o~ 2T
= E(11+125im9—24::{:-5(2@)),:;’(::'—24.187
< 0
1 2x
:E(l'16’—12cos(19)—si11(26’)) —24.187
0
=117 —24.187
=10.370
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Problems Sheet No.4
6- Problems.
A- Polar Coordinates.

1. For the point with polar coordinates (2. Z) determine three different sets of coordinates for the

same point all of which have angles different from 4 and are in the range —27 <0 <27.

2. The polar coordinates of a point are (—5., 0.23) . Determine the Cartesian coordinates for the

point.

3. The Cartesian coordinate of a point are (2.—6). Determine a set of polar coordinates for the

point.

4. The Cartesian coordinate of a point are (—8, 1). Determine a set of polar coordinates for the

point.

For problems 5 and 6 convert the given equation into an equation in terms of polar coordinates.

4,’
5. %: 6—,\:1"
3x7+3y°
4.’.
6. x* :—\73}’2 +2
u‘)

For problems 7 and 8 convert the given equation into an equation in terms of Cartesian
coordinates.

7. 61 sin@=4—cos @
8. E:sin@—sec(%'
-
For problems 9 — 16 sketch the graph of the given polar equation.
9. coséd :E
-
10. 6 =——
11. r=—14cosé
12. r=7
13. »=9smn 6
14. r =8+8cos b
15. r=5—-2smé

16. ¥y =4—-9sm @
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Problems Sheet No.4
B- Tangents with Polar Coordinates.

1. Find the tangent line to 7 =sin(46)cos(8) at € = % :
2

: : 37
2. Find the tangent line to » =@ —cos(8) at § =— .

C- Area with Polar Coordinates.

1. Find the area inside the mnner loop of ¥ =3—8cos @ .

8]

. Find the area imside the graph of » =7+ 3cos @ and to the left of the y-axis.

. Find the area that is inside » =3+ 3sm @ and outside » =2 .

(Y]

4. Find the area that is inside » =2 and outside » =3+ 3sm .

N

. Find the area that 1s inside » =4 —2cos & and outside =6+ 2cos 8.
6. Find the area that is inside both » =1—smn@ and » =2 +smn 6.
D- Arc Length with Polar Coordinates.

1. Determine the length of the following polar curve. You may assume that the curve traces out
exactly once for the given range of &.

r=——4smé, 0<6<x

For problems 2 and 3 set up. but do not evaluate, an integral that gives the length of the given
polar curve. For these problems you may assume that the curve traces out exactly once for the

given range of 4.

S

.r=0cosf.0<6<rx

.r=cos(20)+sin(360). 0=0<27

5]
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1- Sequences.
A sequence is nothing more than a list of numbers written in a specific order.

General sequence terms are denoted as follows,
a, — first term

a, —second term

)
a —n" term

n

a,., —(n+1)" term

There is a variety of ways of denoting a sequence. Each of the following are equivalent ways of
denoting a sequence.

{al’GZ"'""an’an+l""} {an} {an}:zl

Example 1 Write down the first few terms of each of the following sequences.

(a) { " —Z 1 } [Solution]

n

(_1 -)rz+1- * |
(b) T [Solution]

n=0
w bl Lo S
(c) {b, }n:r where b =n" digit of 7 [Solution]

n+l)”
(a){ 3 }m

To get the first few sequence terms here all we need to do is plug in values of » into the formula
given and we’ll get the sequence terms.

{n+1}°° 3 4 5
2 = 2'_=_'-_=
n n=1 — _1; _9 l

~ =
n=2 n=3 n=<

-2
" ‘ N

=

=
Il

wn

.(_l)nﬂ 1%
o[

This one 1s similar to the first one. The main difference is that this sequence doesn’t start at

n=1.
1 ntl ) ® )
) {11 | }
2 4

2?’1‘

| .

N
oo | -
—
(o))

n=0
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(c) {b,} _.where b, =n" digit of 7

So we know that 7 =3.14159265359...

The sequence 1s then,

Theorem 1

Given the sequence {a, } if we have a function f (x) suchthat f(»n)=a, and lim f(x)=L
X—»0

then lima, =L

n—He
Theorem 2
If lun‘a ‘— 0 then lma, =0.
n—»x
Theorem 3
The sequence {r"}w_ converges if —1 < <1 and diverges for all other value of ». Also,
o, 10 i —1<r<l
lim#" = , _
n—0 lf 7= ]_

Example 2 Determine if the following sequences converge or diverge. If the sequence
converges determine 1its limit.

- 3’ —1 N S
Q) —— [Solution]
10n+5n"]

(b) { } [Solution]
() { } [Solution]

(d) } [Solution]

Solution

i1 |
a -
@) {l(]rwﬁn2 }n=2
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To do a limit in this form all we need to do is factor from the numerator and denominator the
largest power of », cancel and then take the limit.

> | 1
2 3__ L
S ”( nz} C3TT 3
lug = :h_>11313 10 211_13;?:—
m—=o |0+ 51 n nz{_+5j n 0.5
n n

So the sequence converges and its limit is 2.

EEH

(b) i —

n

n=l

Normally this would be a problem, but we’ve got Theorem 1 from above to help us out. Let’s
define

2x
e
f(x)=5
¥
and note that,
ezn
£ ="~
n

Theorem 1 says that all we need to do 1s take the limit of the function.
2n 2x 2 e?x

. e e .
Iim — =lim = lim

n—w B X g X—3>0 l

So. the sequence in this part diverges (to o).

e

ﬂ o

n

(c)

n=1

We will need to use Theorem 2 on this problem. To this

-1y
lim ( ) = li111l =0
10 71 H—0 n
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Therefore, since the limit of the sequence terms with absolute value bars on them goes to zero we
know by Theorem 2 that,
i 1 n
(-1
lim (=1 =0
n—0 n

which also means that the sequence converges to a value of zero.

(@) {(—1)”100

j n=0

For this theorem note that all we need to do 1s realize that this 1s the sequence in Theorem 3 above
using ¥ =—1. So. by Theorem 3 this sequence diverges.

Theorem 4

For the sequence {a, } if both Ln%ah =L and ;l;lig a,,,, =L then {a,} is convergent and

lima =L.
n—x

2- Terminology and Definitions.
Let’s start off with some terminology and definitions.

Given any sequence {a”} we have the following.

1. We call the sequence increasing 1f a, < a_,, for every n.

n+l

2. We call the sequence decreasing if a, > a ., for every n.

3. If {a,} is an increasing sequence or {a, } is a decreasing sequence we call it monotonic.

4. If there exists a number /2 such that m < a, for every » we say the sequence 1s bounded
below. The number  is sometimes called a lower bound for the sequence.

tn

If there exists a number M such that a, <M for every n we say the sequence is
bounded above. The number M is sometimes called an upper bound for the sequence.

6. If the sequence is both bounded below and bounded above we call the sequence
bounded.

Example 1 Determine if the following sequences are monotonic and/or bounded.

(a) {—nz } & [Solution]

(b) {(—1)H+1}I [Solution]
J =l
21" |
(©) y—= [Solution]
n n=>3
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Solution

(a) {—;»?2}

o

n=0

This sequence is a decreasing sequence (and hence monotonic) because,
5 A2
—n">—(n+l)
for every n.

(b) {(—l )n+1 }:3:1

The sequence terms in this sequence alternate between 1 and -1 and so the sequence is neither an
mcreasing sequence or a decreasing sequence. Since the sequence is neither an increasing nor
decreasing sequence it is not a monotonic sequence.

The sequence is bounded however since it is bounded above by 1 and bounded below by -1.

21%
© H

This sequence 1s a decreasing sequence (and hence monotonic) since,
2 2

- > - @
2 2

n (n+1)

The terms in this sequence are all positive and so it 1s bounded below by zero. Also, since the

sequence is a decreasing sequence the first sequence term will be the largest and so we can see
that the sequence will also be bounded above by . Therefore, this sequence is bounded.

We can also take a quick limit and note that this sequence converges and its limit is zero.

Example 2 Determine if the following sequences are monotonic and/or bounded.

(a) {L} [Solution]

n+l

n=1
3 = oo
_ [Solution]
n* +10000 L
Solution
oo
n
(a) 1
n+lj,
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To determine the increasing/decreasing nature of this sequence we will need to resort to Calculus
I techniques. First consider the following function and its derivative.

1= fix)=—

x+1

We can see that the first derivative 1s always positive and so from Calculus I we know that the
function must then be an increasing function. So, how does this help us? Notice that,

) n
nl=———=—a
f( ) n+l1

n

Therefore because 7 <n+1 and f(x) is increasing we can also say that

n n+l1
a. = =f(n)< n+l)=——=a = a <da
n ”_’_1 f( ) f( ) J’?+1+1 n+l n n+l

In other words, the sequence must be increasing.

Note that now that we know the sequence is an increasing sequence we can get a better lower
bound for the sequence. Since the sequence 1s increasing the first term in the sequence must be

the smallest term and so since we are starting at # =1 we could also use a lower bound of 1 for

this sequence. It 1s important to remember that any number that is always less than or equal to all
the sequence terms can be a lower bound. Some are better than others however.

A quick limit will also tell us that this sequence converges with a limit of 1.
3 1%
n

n* +10000

(b)

=[]

This however, 1sn’t a decreasing sequence. Let’s take a look at the first few terms to see this.

4 = — %0.00009999 a, = —— ~0.0007987
10001 1252

a, =2 ~0.005678 4, =~ 0006240
10081 641
' . 27 o

a, = — ~0.011756 a,=—""~0.019122

785 14
343

a, == 002766 4y =22 003632
12401 881

gy =22 0.04402 G = —— = 0.05
16561 20
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Now, we can’t make another common mistake and assume that because the first few terms
increase then whole sequence must also increase. If we did that we would also be mistaken as
this 1s also not an increasing sequence.

This sequence is neither decreasing or increasing. The only sure way to see this is to do the
Calculus T approach to increasing/decreasing functions.

In this case we’ll need the following function and its derivative.
3 ey

: X =7 (x*=30000)

v) = "(x)=

f(x) x* +10000 71x)

(x* +10000)

This function will have the following three critical points.
x=0. x=330000 ~13.1607, x=-+/30000 ~—13.1607

Why critical points? Remember these are the only places where the function may change sign!
Our sequence starts at # =0 and so we can ignore the third one since it lies outside the values of
n that we’re considering. By plugging in some test values of x we can quickly determine that the

derivative is positive for 0 < x < 3/30000 ~13.16 and so the function is increasing in this range.

Likewise, we can see that the derivative is negative for x > /30000 ~13.16 and so the function
will be decreasing in this range.

So, our sequence will be increasing for 0 <» <13 and decreasing for » > 13 . Therefore the
function is not monotonic.

3- Series — The Basics.
That topic is infinite series. So just what 1s an infinite series? Well, let’s start with a sequence

[+ 4] p . . . . .
{an} , (note the n =1 1s for convenience, it can be anything) and define the following,
n=
51 =4
s, =a,+a,

S;=da,+a, +d,

S, =a;t+a, tay;t+a,

n
s =a,+a,+a,+a,+--+a :Zai
i=1

The s are called partial sums and notice that they will form a sequence, {,s'” }:):1. Also recall

that the X 1s used to represent this summation and called a variety of names. The most common
names are : series notation, summation notation, and sigma notation.
) [0 4]

We want to take a look at the limut of the sequence of partial sums, {.S’ﬁ §

M=
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Notationally we’ll define,

n a0
lims, =l Z a. = Z a.
n—0 n—C -1 i=1

. . w . . .. .
If the sequence of partial sums, {.s'n} - 1s convergent and its limit 1s finite then we also call the
0 S e

oo
infinite series, Z a, convergent and 1f the sequence of partial sums 1s divergent then the mfinite
i=l

series 1s also called divergent.

Note that sometimes it is convenient to write the infinite series as,
a0
da=a+aytay++a, +o
=1

So. we’ve determined the convergence of four series now. Two of the series converged and two
diverged. Let’s go back and examine the series terms for each of these. For each of the series
let’s take the limit as » goes to infinity of the series terms (not the partial sums!!).

limn = this series diverged
n—x0
llm——=0 this series converged
n—x p< _1
- i n - . . .
lim(—1) doesn't exist this series diverged
n—x0
lm—=0 this series converged
n—wx 317

Theorem

If > a, converges then lima, =0.
n—0

Divergence Test
If lima, #0 then > a, will diverge.

H—*0

Example -1 Determine if the following series is convergent or divergent.
o0 ‘4?’?2 o ?’?3

Zlﬂ+2n?'

n=0
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That’s what we’ll do here.

C Ant - 1
Im——-—=-—%0
=00+ 2n 2

The limit of the series terms 1sn’t zero and so by the Divergence Test the series diverges.

4- Type of Series.

A- Geometric Series.
A geometric series 1s any series that can be written in the form,

os

-1
S ar
n=1

or. with an index shift the geometric series will often be written as,

ao
Sar

n=0

These are identical series and will have identical values, provided they converge of course.

Recall that by multiplying S, by r and subtracting the result from S, one obtains

If we start with the first form it can be shown that the partial sums are,

S _a(l_"n)_ a ar’
" -7 -7 1-r

The series will converge provided the partial sums form a convergent sequence, so let’s take the

limit of the partial sums.
: . a ar”
lims, =lm| ————
n—w nsel l—p l—r

n
) a . ar
=lm— —lim—
30 1 —p nom 1, e
a a ..
=—————lim7”"
I-r l-pnoe

Now. from Theorem 3 from the Sequences section we know that the limit above will exist and be
finite provided —1 <7 <1. However. note that we can’t let » =1 since this will give division by
zero. Therefore, this will exist and be finite provided —1 < r <1 and in this case the limit is zero
and so we geft,

a

lims =——
n—>o J_ —r

Therefore, a geometric series will converge if —1 < » <1, which is usually written M <1, its

value is,




Example 1 Determine 1f the following series converge or diverge. If they converge give the
value of the series.

(ﬂ) Z 9—H+24ﬁ'+1
n=l1

3:;
(b) Z n-1
=0 :J
Solution
(a) Zg—ﬁ+24ﬂ+l
n=1

So, let’s first get rid of that.
w 4n+l

i9—n+24ﬁ+1 _ i_l 9—(W—2)4n+1 _ Zl 9n_2

Now let’s get the correct exponent on each of the numbers. This can be done using simple
exponent properties.

oo 4n+1 sl 41;—142

29—n+24n+l _ Z 9n_2 — Z 9”_19_1

n=1 n=1 n=1

Now, rewrite the term a little.

n—-1 © "
29‘””4"“ 216 9)4.'1‘1 ZHJ{ ]

So, this 1s a geometric series with a =144 and » =3 <1. Therefore, since M <1 we know the

series will converge and its value will be,

S gy 144 9(144) 1296
n= l_i - 5
9

3n

(b) Z

n=(0 ‘
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So, we’ve got it into the correct form and we can see that a =5 and » = —6—;‘. Also note that
M > 1 and so this series diverges.

Example 2 Use the results from the previous example to determine the value of the following
series.

(a) Z 9—J}+24n+1

n=0

(b) Z 9—?2+24H+].

n=3

Solution

(a) Z 9—n+24n+1
n=0

Let’s notice that if we strip out the first term from this series we arrive at,

i 9—?‘I+24n+1 — 9241 + i 9—n+24h‘+1 =324+ i 9—!}+24n+1

n=0 n=1 n=l

From the previous example we know the value of the new series that arises here and so the value
of the series in this example is,

1296 2916
+ — —

Z 9—H+24H+1 _ 32_1_
n=0 D 5

(b] Z 9—”+24n+1
n=3

Z 9—Jr+24n+1 — 9142 + 9043 + Z 9—n+24n+1 _ 208 + Z 9—n+24n+1

n=l1 n=3 n=3

We can now use the value of the series from the previous example to get the value of this series.

Z 9—n+24n+1 — Z 9—n+24n+1 - 208 — 1296 - 208 _ ﬁ
n=3 5

n=1 - S
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B- Power Series.
Fact ( The p —series Test)

= 1 : | . "
If £ >0 then Z—p converges if p >1 and diverges if p <1.
i 1

Using the p-series test makes it very easy to determine the convergence of some series.

Example 3 Determine if the following series are convergent or divergent.
w
1

Solution
(a) In this case p =7 > 1 and so by this fact the series is convergent.

(b) For this series p =2 <1 and so the series is divergent by the fact.

In this section we are going to start talking about power series. A power series about a. or just
power series, is any series that can be written in the form,

®
Z ¢, (x—a)
n=0

The ¢,’s are often called the coefficients of the series.

First, as we will see in our examples, we will be able to show that there is a number R so that the

power series will converge for, ‘x — a‘ < R and will diverge for |x — a‘ > R . This number is

called the radius of convergence for the series. Note that the series may or may not converge if

X— a‘ = R . What happens at these points will not change the radius of convergence.

Secondly, the mterval of all x’s, including the endpoints if need be, for which the power series
converges 1s called the interval of convergence of the series.

These two concepts are fairly closely tied together. If we know that the radius of convergence of
a power series 1s R then we have the following.

a—R<x<a+R power series converges

x<a—R and x>a+R power series diverges

The interval of convergence must then contain the interval ¢ — R < x < g + R since we know that

the power series will converge for these values.

94



Before getting into some examples let’s take a quick look at the convergence of a power series for
the case of x = a . In this case the power series becomes,

icn(a—a)” = icn(OTI = ¢, (0) +icﬂ(0)n :c:o+i:0:co+0:co
n=0 n=0 n=1

n=1
and so the power series converges. Note that we had to strip out the first term since it was the
only non-zero term in the series.

Example 1 Determine the radius of convergence and interval of convergence for the following
power series.

ZLL) " (x+3)

Solution

With all that said, the best tests to use here are almost always the ratio or root test. Most of the
power series that we’ll be looking at are set up for one or the other. In this case we’ll use the
ratio test.

yn+l n+l ‘

[T (-1) (n+nJlrl)(x+3) _ 4" :
n—>0 4 (-1) (n)(x+3)

—( 1)(x+3
. (n+1)(x+3)
n—w 4?’?

The limit 1s then.

T |
lim
o 4p

L=|x+3

1

x+3

So. the ratio test tells us that if L <1 the series will converge. if L > 1 the series will diverge,
and if L =1 we don’t know what will happen. So. we have,

! x+3‘<1 —
4

X+ 3‘ <4 series converges

! x+3‘>1 —
4

X+ 3‘ >4 series diverges

radmus of convergence for this power series1s R =4.

Now, let’s get the interval of convergence. We’ll get most (if not all) of the interval by solving
the first inequality from above.
—4<x+3<4

—TJT<x<l
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The way to determine convergence at these points is to simply plug them into the original power
series and see if the series converges or diverges using any test necessary.

x=-7:
In this case the series is.

Sy s By

n=1

S Y (1) (1) (-1) = (-1 =1

This series 1s divergent by the Divergence Test since limn =o0 % 0.
n—x

x=1:
In this case the series is.

. . . . . . . WM . .
Thus series 1s also divergent by the Divergence Test since 11111{—1) n doesn’t exist.
n—»o0

So, 1n this case the power series will not converge for either endpoint. The interval of
convergence is then,

—T<x<l
Example 2 Determine the radius of convergence and interval of convergence for the following
Power series.

> 2 (4x-8)

n=1 n

Solution
Let’s jump right into the ratio test.

274 (4x—8)""
L=1lm ( . ) , 7
o n+l 2" (4x-38)

n

2n(4x -8
:1imM

ol 4]

. 2n
lim ——
H— n +l

4x—§

4x —8

=2

So we will get the following convergence/divergence mformation from this.
2 ‘4,\'— 8| <1 series converges

2 ‘4,\'— 8| >1 series diverges
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We need to be careful here in determining the interval of convergence. The interval of

convergence requires ‘x — a‘ <Rand |x— a‘ > R . In other words, we need to factor a 4 out of the

absolute value bars in order to get the correct radius of convergence. Doing this gives,

8

xX— 2‘ <1 = ‘x — 2‘ < é series converges

8

. 1 L
xX— 2‘ >1 = ‘x — 2‘ > 2 series diverges
So, the radius of convergence for this power series is R = ¢

Now, let’s find the interval of convergence. Again, we’ll first solve the inequality that gives
convergence above.

1 1
——<x-2<—
15 17
—<x<—
Now check the endpoints.
15
X=—1:
8
The series here 1s,
w 2?3 15 n n 1 n
e e R b
= n o\ 2 n 2

This is the alternating harmonic series and we know that it converges.

_17.
=

The series here i1s,

X

202

:'1‘21 J? ]}:1 J?
o n 1
n=l 1 2”
o
n=1 1
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The mterval of convergence for this power series 1s

—=<Xx<—
Example 3 Determine the radius of convergence and interval of convergence for the following
power series.

o

> nl(2x+1)"
n=0
Solution
We’ll start this example with the ratio test as we have for the previous ones.
) wh+l
(m+1)!(2x+1)

L =lm .
el ol (2x+1)

lim (n+1)n!(2x+1)

n—0 M l

=[2x+1

lim(n+1)

n—»

At this point we need to be careful. The limit is infinite, but there is that term with the x’s in front
of the limit. We’ll have L = >1 provided x # —1.

Example 4 Determine the radius of convergence and interval of convergence for the following
power series.

Solution

In this example the root test seems more appropriate. So,
1

x—6)"|"
L zlimu

n—0 n n

. |x—6
=lim
H—0 n

|
= lim —
n—o n

x—0

=0

So, since L =0 <1 regardless of the value of x this power series will converge for every x.

In these cases we say that the radius of convergence is R =« and interval of convergence is
—00 <X <0,
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C- Alternating Series.
alternating series is any series, Z a, . for which the series terms can be written in one of the

following two forms.

There are many other ways to deal with the alternating sign, but they can all be written as one of
the two forms above. For mstance,
Y 132 )
(=) (=1 =(=1)’

(_1)n+2
(_1)n—1 _ (_.l-)nﬂ (_1-)—2 _ (_l)nﬂ

Alternating Series Test
Suppose that we have a series » a, and either a, =(-1)"5, or a, =( —1)”“ b, where b_>0
for all n. Then if.

1. limb =0 and,
n—x

2. {bn} is a decreasing sequence

the series Z a, 1s convergent.

Example 1 Determine if the following series is convergent or divergent.
n+l

&)

n=1 n
Solution
First, 1dentify the b, for the test.
© —l n+l © l l
Lyt
>EL syl 5=
i /] — n n
Now, all that we need to do is run through the two conditions in the test.
lmb =lim—=0
n—»0 =0 37
1 |
]')n :_>—:bn+l
n n+l

Both conditions are met and so by the Alternating Series Test the series must converge.
The series from the previous example is sometimes called the Alternating Harmonic Series.

’ n+l n . . N . .
Also. the (—1)  could be (—1)" or any other form of alternating sign and we’d still call it an

Alternating Harmonic Series.
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Example 2 Determine if the following series is couvel‘geut or divergent.

Z(

— n’ +5
Solution
First, 1dentify the b, f01‘ the test.
o] ' o }?2
Z _Z( = b,==
~ n +‘3 ~ n +35
Let’s check the conditions.
2
n

limb =lm =1#0
n—w n—0 ?’?2 +5

So, the divergence test requires us to compute the following limit.

. n 2
. (=) m
lim 5
e T+ 5

This limit can be somewhat tricky to evaluate. For a second let’s consider the following,

1 no2 . 2
lim(z#:(lim(—l) ){lim 7 ]

n—o - 4+5 H—0 n—=®o - 45

(VL2 2
limuzlim{(—l)n 1 }

So, let’s start with,

n—$0 }?2 +5 n—wo ”2 +5
Now, the second part of this clearly is going to 1 as » — oo while the first part just alternates
between 1 and -1. So, as » — oo the terms are alternating between positive and negative values
that are getting closer and closer to 1 and -1 respectively.

In order for limits to exist we know that the terms need to settle down to a single number and
since these clearly don’t this limit doesn’t exist and so by the Divergence Test this series

diverges.

Example 3 Determine if the following series 1s convergent or divergent.

U

‘o n+4
Solution
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M
n+4
so let’s check the conditions.
The first 1s easy enough to check.
. . A
limb, =lim——=0
H—x H— 1 _|_ ,_]_

Let’s start with the following function and its derivative.
f(x)= f(x)=
S ( 2( X+ 4)

Now, there are three critical points for this function, x =—4, x =0, and x =4 . The first is
outside the bound of our series so we won’t need to worry about that one. Using the test points,

50 810
and so we can see that the function in icreasing on 0 < x <4 and decreasing on x > 4 .
Therefore, since f (n) = b_we know as well that the b, are also increasing on 0 <7 <4 and

decreasing on 7 =>4 .

The b, are then eventually decreasing and so the second condition is met.

Both conditions are met and so by the Alternating Series Test the series must be converging.

Example 4 Determine 1if the following series is convergent or divergent.

CDS(J?;T)

P

n=2

Solution
The point of this problem is really just to acknowledge that it is in fact an alternating series. To
see this we need to acknowledge that,

cos(nz)=(-1)"

and so the series is really,

Checking the two condition gives,

limb = hm =0

n ||'
n—»o n—>w

The two conditions of the test are met and so by the Alternating Series Test the series is
convergent.



5- Comparison Test .
Comparison Test
Suppose that we have two series Zan and an with a,.b, >0 forall » and a, <b, forall n.
Then,
1. If Z b, 1s convergent then so is Z a, .

2. If Z a, 1s divergent then so is ZE?” :

consider the following series.

Now,

n=0

<1 the series will converge and its value

. . . . 1
is a geometric series and we know that since ‘I‘ = ‘—

will be,

Now, 1f we go back to our original series and wri‘re down the partial sums we get,

Since all the terms are positive adding a new term will only make the number larger and so the

sequence of partial sums must be an increasing sequence
n n+l

S”_Z <Z%J - = Snn

IO?Jrr

%‘+r

Then since,

1 |
3"+n 3
and because the terms in these two sequences are positive we can also say that,
” 3
s < = 5 < —
X Ly Ly "3
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So, the sequence of partial sums of our series is a convergent sequence. This means that the
series itself,

= 1
Z n

3 +n

1s also convergent.

Example 1 Determine if the following series 1s convergent or divergent.

o

n
2.

= n’ —cos’(n)

Solution

Since the cosine term in the denominator doesn’t get too large we can assume that the series
terms will behave like,

n

|
non

The}efm‘&

n n 1

f?z—ccmsg(n) n- o on

n=1 1

diverges (it’s harmonic or the p-series test) by the Comparison Test our original series must also
diverge.

Example 2 Determine if the following series converges or diverges.

i n*+2

4 =
o +D
Solution

In this case the “+2” and the “+5” don’t really add anything to the series and so the series terms
should behave pretty much like

Let’s take a look at the following series.

n+2 = 5
Z =2t

n=1 n=l1

P
:iL 52

2
—

n=l1 n
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As shown, we can write the series as a sum of two series and both of these series are convergent
by the p-series test. Therefore, since each of these series are convergent we know that the sum,

oo

n+2
2

n=1 n

1s also a convergent series. Recall that the sum of two convergent series will also be convergent.

Now. since the terms of this series are larger than the terms of the original series we know that the
original series must also be convergent by the Comparison Test.

6- Absolute Convergence.

First, let’s go back over the definition of absolute convergence.

Definition

A series Z a, 1s called absolutely convergent if Z ‘an‘ is convergent. If Z a, 1s convergent

and Z ‘a"‘ is divergent we call the series conditionally convergent.

We also have the following fact about absolute convergence.

Fact

If z a, 1s absolutely convergent then if is also convergent.

Example 1 Determine if each of the following series are absolute convergent, conditionally
convergent or divergent.

o (_.l)n
(a) ;—”

n+2

w _1
(b) 27( }?)2

oD N
S1m A7
(©) > ——
n=1 N

Solution

oo _1 ).i}
@ >

n=l1 n
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This is the alternating harmonic series and we saw in the last section that it is a convergent series
so we don’t need to check that here. So, let’s see if it is an absolutely convergent series. To do
this we’ll need to check the convergence of.

g(—l) =i—

n on

that 1t 1s divergent.

Therefore, this series is not absolutely convergent. It is however conditionally convergent since
the series itself does converge.
32
= (=)
® >
n=1 7

2
4

In this case let’s just check absolute convergence first since if it’s absolutely convergent we won’t

need to bother checking convergence as we will get that for free.
n+2

Sl 51

n=1 n n=l 1

I
M s

Il
LN

This series 1s convergent by the p-series test and so the series is absolute convergent. Note that
this does say as well that it’s a convergent series.

* osimnn
© > —
n=l n

i s 7 i ‘sin n‘
3 | 3
n=l| 1 n=l N
To do this we’ll need to note that
—1<smn<l — ‘sinn‘il

and so we have.

Now we know that

>

3

n=1 1

converges by the p-series test and so by the Comparison Test we also know that
- ‘sin n‘
2
n=1 M

converges.

Therefore the original series 1s absolutely convergent (and hence convergent).
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7- Ratio Test.
Ratio Test
Suppose we have the series Z a, . Define,

an+1

a

n

L=Ilm

n—0

Then,

1. if L <1 the series is absolutely convergent (and hence convergent).
if L >1 the series is divergent.
if L =1 the series may be divergent, conditionally convergent, or absolutely convergent.

w19

Example 1 Determine if the following series is convergent or divergent.

4 (n+1)

Solution

With this first example let’s be a little careful and make sure that we have everything down
correctly. Here are the series terms a,.
(-10)’

a =——"—
g 42”+l(}?+1)

Recall that to compute a,+; all that we need to do is substitute »+1 for all the »’s 1n a,.
yn+l ¢ yn+l

(~10) (~10)
a,, = - :
n+l 42[n+1}+1 ((?’?+1)+1) 42n+3 (?’? + 2)

Now, to define L we will use,

. 1
L=lma,_, -—
n—0 a
n

since this will be a little easier when dealing with fractions as we’ve got here. So,
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n+l In+l .
] (£10) e “(n+1)\
H—>0 42n+3 (?’?+2) (_10)” ‘

—10(n+1
:lim#)
oo 4% (n+2)

10.. n+l
=—lm
16m=>2p+2
10

16

<1

So, L <1 and so by the Ratio Test the series converges absolutely and hence will converge.
Example 2 Determine if the following series is convergent or divergent.

v o}

n!

=
n=0 ~

Solution

Now that we’ve worked one in detail we won’t go into quite the detail with the rest of these.
Here is the limit.

_ +1)15 +1)!
L=1lm ( +1) — :1111(;?_ )
noxe| ST pll e 5 opl
- (n+1)n!
L =1lm
e 5 p!
at which point we can cancel the »! for the numerator an denominator to get,
. (n+1) _
L=lm—~ =w>1
n—o 3

So. by the Ratio Test this series diverges.

Example 3 Determine if the following series 1s convergent or divergent.
o0 2

Z“(2411'—1)!

n=2

Solution
In this case be careful i dealing with the factornals.
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L (n+1) (2;7—1)!‘
2| (2(n+1)-1)1 |

2 Y
i (n+1)" (2n : 1)!
oo (2n+1)l n”

L2 . e
= lim (n+1) @n-1)!
= (2n+1)(2n)(2n-1)!  »’
\2

=lim (n+) :
== (2n+1)(2n)(n’)
=0<1

So, by the Ratio Test this series converges absolutely and so converges.
Example 4 Determine if the following series is convergent or divergent.
oo 9”
) +1
n=1 (_2)” n
Solution

Do not nustake this for a geometric series. The » in the denominator means that this isn’t a
geometric series. So, let’s compute the limit.

n+l _2' n+l
L =lm|- 32, ( )n ”‘
o2y (nel) 9
. 9n
=lm—
ol (=2)(n+1)
9 .. n
=—lm
2mep+]
= J >1

Therefore, by the Ratio Test this series 1s divergent.
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Example 5 Determine if the following series is convergent or divergent.

3 (=1

~n’+1
Solution
Let’s first get L.

4 yn+l
. o BT | R n’ +1
L=lm ( )2 ——|=lim- — =1

e (n+1) 41 (=1) | o (n+l) +1

So, as implied earlier we get L =1 which means the ratio test is no good for determining the

convergence of this series. We will need to resort to another test for this series. This series is an

alternating series and so let’s check the two conditions from that test.

limbp, =lim —=0
n—x n—»x n o+ 1
bﬁ - l > l - JE‘.):’Hl

n’ +1 (n+1)2+1

The two conditions are met and so by the Alternating Series Test this series is convergent. We’ll

leave it to you to verify this series is also absolutely convergent.
Example 6 Determine if the following series is convergent or divergent.

i n+2
= 2n+7
Solution
Here’s the limit.
_ 3 C (n+3)(2n+7
L:hm‘ nT 2”+7‘:hm(n )( i ):1

=2 2(n+1)+7 n+2| = (2n+9)(n+2)

Again, the ratio test tells us nothing here. We can however, quickly use the divergence test on

this. In fact that probably should have been our first choice on this one anyway.

. n+2 1
lim =—=0
oo 2p+ 7 2

By the Divergence Test this series is divergent.

8- Root Test.
Root Test

Suppose that we have the series Za” . Define,
L=lmy a”‘ = lim‘a”
n—x n—»w
Then,

4. 1f L <1 the series is absolutely convergent (and hence convergent).
5. if L >1 the series is divergent.
6. 1if L =1 the series may be divergent, conditionally convergent, or absolutely convergent.

n
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Fact

1

limn” =1
H—

Example 1 Determine if the following series is convergent or divergent.

1+2n
n=1 3
Solution

There really isn’t much to these problems other than computing the limit and then using the root
test. Here is the limit for this problem.

o n
=lim — =
T _+2
n

n

L= 11111

=w>1

2|8

q1+2,

So. by the Root Test this series is divergent.

Example 2 Determine if the following series is convergent or divergent.

n

Z"”: Sn—3n’
—~\ T’ +2
Solution
Again, there 1sn’t too much to this series.
1
e
: 5n=3n " .. |5n-3n’ | 3
L=lm| —5—— =lim —
e || T 42 e T 2| 7] 7

Therefore, by the Root Test this series converges absolutely and hence converges.

Example 3 Determine if the following series 1s convergent or divergent.

s (-12)’
n=3 n
Solution
Here’s the limit for this series.
1
C(=12)") 12 12
L:hlll( ) —11111—:—:12>1
H—0 1 n—0 ; 1
n

After using the fact from above we can see that the Root Test tells us that this series 1s divergent.
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9- Taylor Series.

So, for the time being, let’s make two assumptions. First, let’s assume that the function [ (\)

does in fact have a power series representation about x =a .

w
f(x):ch (x—a')n =c,+¢(x—a)+e, (x—czv)2 +c3(x—a)3 +c, (Jr—a)4 T
n=>0
Next, we will need to assume that the function, f (x ) , has derivatives of every order and that we
can in fact find them all.

Now that we’ve assumed that a power series representation exists we need to determine what the
coefficients, ¢,, are. This is easier than it might at first appear to be. Let’s first just evaluate
everything atx = ¢ . This gives,

fla)=

However, if we take the derivative of the function (and its power series) then
plugin x =a we get,

.f‘(x):Cl+2C2(:\'—G)—|—3C3(:\‘—a)2—|-'_'1rc4(x_a)3 4o
fla)=¢

and we now know c;.

Let’s continue with this idea and find the second derivative.
" ( 2
F"(x)=2¢,+3(2)c;(x—a)+4(3)c,(x—a) +--
f”(a ) =2c¢,

So. 1t looks like,
/")
i 2
Using the third derivative gives.
Fr(x)=3(2)e+4(3)(2)e, (x—a)+--
. L a
f"(a)=3(2)q = 03:f ()

Using the fourth derivative gives,

Fx)=4(3)(2)e, +5(4)(3)(2)es (x—a)-
/(@) =4(3)(2)e, SN i G}
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Hopefully by this time you’ve seen the pattern here. It looks like, in general, we’ve got the
following formula for the coefficients.

1 (a)

n!

Cn:

This even works for n=0 if you recall that 01=1 and define £ (x)= f(x).

So, provided a power series representation for the function 7 (\) about x = a exists the Taylor
Series for f (x) about x =ais,

Taylor Series

fm'(a)
3!

If we use a =0, so we are talking about the Taylor Series about x =0 , we call the series a
Maclaurin Series for f(x) or,

(x—a) +-

7o) 7 @)y D ey

Maclaurin Series

f(0)+f'(0)«\‘+f;(!0)x + .3! P

=3
\_ti
3
—
o
—

To determine a condition that must be true in order for a Taylor series to exist for a function let’s
first define the n™ degree Taylor polynomial of 1 (x) as,

. 00 (, }_
7 (0)-3L D a)

- 1!
Notice as well that for the full Taylor Series,

if}}—ga)(x—a)”

Next, the remainder 1s defined to be,

R, (x)=7(x)-T,(x)

So. the remainder is really just the error between the function f () and the n™ degree Taylor
polynomial for a given »n.

With this definition note that we can then write the function as,

f(x)=T,(x) 1R, (x)
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Theorem

Suppose that f(x)=T,(x)+R, (x). Then if,
llmR (x)=0

H—>00
for x—a‘ < R then.
. o f‘[”](a ,
10)-3 1 w0
n=0 n:
on x—a‘c:R.

Example 1 Find the Taylor Series for f (x)=e" about x=0.

Solution
To get a formula for f ) (0) all we need to do 1s recognize that,

f[nJ(l'):El' n=0.123,...
and so.
F(0)=e" =1 n=0.1.2.3....

Therefore, the Taylor series for f'(x)=e" about x=01s,

Example 2 Find the Taylor Series for f(x)=e" about x=0.

Solution
Solution 1

As with the first example we’ll need to get a formula for 7 (0). However, unlike the first one

we’ve got a little more work to do. Let’s first take some derivatives and evaluate them at x=0.

f‘U) (\) —e* f(Ol (0):1
fm( )=—e" fm(()):—l
A= 0=
f”"( )=—e fm(()):—l

P (x)=(=1)" e f70)=(-1) n=012.3



So, in this case we’ve got general formulas so all we need to do is plug these into the Taylor
Series formula and be done with the problem.

L & ()
e =) —F
; n!
Solution 2

So, all we need to do is replace the x in the Taylor Series that we found in the first example with

X .

"

LS (= x (—1)" x"
S YE

n=0 n=0 n l

This is a much shorter method of arriving at the same answer so don’t forget about using
previously computed series where possible (and allowed of course).

Example 3 Find the Taylor Series for f(x)= x*e™ about x=0.

Solution

For this example we will take advantage of the fact that we already have a Taylor Series for e*

about x = 0. In this example, unlike the previous example, doing this directly would be
significantly longer and more difficult.

To this point we’ve only looked at Taylor Series about x =0 (also known as Maclaurin Series)

so let’s take a look at a Taylor Series that isn’t about x =0.
Example 4 Find the Taylor Series for f(x)=e™" about x =—4.

Solution
Finding a general formula for £ (—4) is fairly simple.

70 (5)= (1) e 7O ()= (1)’ ¢
The Taylor Series 1s then,

e _l nmo4 i
e = (D e (x+4)

n=>0 n!
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Example 5 Find the Taylor Series for f(x)=cos(x) about x=0.

Solution

First we’ll need to take some derivatives of the function and evaluate them at x=0.
Y (x)=cosx F20)=1
FY(x)=—sinx Y(0)=0
P (x)=—cosx F20)=-1
Y (x)=sinx P(0)=0
‘f{d';](x):cosx ‘f{4:](0'):l
fP(x)=—sinx F2(0)=0
F19(x)=—cosx F9(0)=-1

® [”}'0
cosx:Z—f ( )x”

— n!
_ (o) f(0)xs LD 2 SO 5 SO 4 SO 5
‘ ‘ 2! 3! 41 5!
1
=1 +0-——x"+0+—x"+0-——x+
0 o — 4! -~ 6!
n=0 n=1 “—— n=3 ‘*“"—— n=5 ‘——
n=2 n=4 n=>06
1, 1 1
2 4 6
cosx= 1 —x"+—x ——x +
- 21 41 6!
M= B [ S [ SE—
= n=2 n=3
cosx =1 —i,\3+ix4_ix6+
—~— 2! 41 6!
e

By renumbering the terms as we did we can actually come up with a general formula for the
Tavlor Series and here it 1s,
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Example 6 Find the Taylor Series for f(x)=sin(x) about x=0.

Solution
As with the last example we’ll start off in the same manner.
F9(x)=sinx 790)=0
F(x) = cosx rU(0)=1
P (x)=-sinx 2 (0)=0
fm(:x):—cosx fm((]):—l
FY(x)=sinx F4(0)=0
7 (x)=cosx 7 (0)=1
£ (x)=—sinx F(0)=0
So, we get a similar pattern for this one. Let’s plug the numbers into the Taylor Series.
. (7) (ey
= (0
sinxzz A )x”
= n!

1 1.5 1.5 1,

X X ——x +
3! 5! 7!

=—X
1!

So renumbering the terms as we did 1 the previous example we get the following Taylor Series.

. o o (_1)” x}lrf-i—]
=2 )

=0

We really need to work another example or two in which f {x) isn’t about x =0.

Example 7 Find the Taylor Series for f(x)=1In(x) about x=2.

Solution
Here are the first few derivatives and the evaluations.
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fcin(x):l ftjl}(z):%
ftz][*\)——% ffzz}(Z):_éLz
f‘s]{x)—% ftﬁ3}(2):%

f{ﬂ(,\‘):2(?;‘)5(4) ftjﬁgl(z):

f(”}(x):(_l) - n f(ﬂ,’](2): B

n=1273....

In order to plug this into the Tavlor Series formula we’ll need to strip out the # =0 term first.

w £y
n(x)=3 Loy

— n!

AT D
:f(z)+zlif n!( )(x—2)

:111(2)+iw(x—2)”

~ n! 2"
' © (_] n+l )
:111(2)+;(n2)?} (x-2)
Example 8 Find the Taylor Series for f(x)= le about x =—1.
Solution
Again, here are the derivatives and evaluations.
o0, 1 0 / 1
(== O E)=—s
> (-1)
( 2 ( 2
L) (.. (1)
x)=-% () =5
X (1)
2 2(3 : _ 2(3
70 ()= 28 70 (=280
. (-1)
3) / 2(3)(4 : _ 2(3)(4
=R e
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70 = CLL o GOy,

(=1)

Here 1s the Taylor Series for this function.

L&),
I A S|
x? ; n! (x )
= (n+1)!
B G T
n=0 ”!
=3 (n+1)(x+1)"

=

n=

Example 9 Find the Taylor Series for f(x)= x° —10x" +6 about x=3.

Solution
Here are the derivatives for this problem.

S (x)=x"-10x" +6 F9(3)=-57

Y (x)=3x" -~ 20x V(3)=-33

% (x)=6x-20 r7(3)==2

s (x)=6 r7(3)=6

" (x)=0 fY(3)=0 n=4

This Taylor series will terminate after » =3 . This will always happen when we are finding the
Taylor Series of a polynomial. Here is the Taylor Series for this one.

(n)
o L. 3 n
x3—10x2+6zzf f )(,\‘—3)
n=0 n!

=/(3)+/"(3)(x=3)+

=-57-33(x=3)—(x-3)" +(x-3)

I'G) sy L0,
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Problems Sheet No.5
10- Problems.

A- Seguences.

For problems 1 & 2 list the first 5 terms of the sequence.

e
n—=7J,

(_1 -)m—l 1=
2n+(-3)" L

For problems 3 — 6 determine if the given sequence converges or diverges. If it converges what is
its limit?

| n=Tn+3 1"
34—
1410 —4n- s

(_1 )Jr—l ”2

4.
4+n’

n=0

{ ein }x
’ 2n
3 —e n=1

. { In(n+2) }m
In(1+4n) 1

S =

n

For each of the following problems determine if the sequence is increasing, decreasing, not
monotonic, bounded below, bounded above and/or bounded.

]

ad
P
(V'S
|
=
St
io08
=)
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Problems Sheet No.5
B- Series.

For problems 1 & 2 compute the first 3 terms in the sequence of partial sums for the given series.

1. n2"
=1

n

> 2n

5>

s h+2

oo
For problems 3 & 4 assume that the »™ term in the sequence of partial sums for the series Z a,
n=0

o

is given below. Determine if the series Z a, 1s convergent or divergent. If the series is
n=0

convergent determine the value of the series.

5+8n°
§ =
" 2n—=Tn"

(=]

n

4 5, =—
54 2n

For problems 5 & 6 show that the series is divergent.

n

ne

%]

.

=’ 1
6 i6+8n+9n2
' 3+2n+n’

n=3

For each of the following series determine if the series converges or diverges. If the series
converges give its value.

1. i 32,+Jf 2]—3n
n=0

w g

b

o]

n=1 6”
- (—6 )37.”
. Z 82_”

n=1

(4d

- 3

5>

n=1

n+Tn+12
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Problems Sheet No.5
C- Comparison Test.

For each of the following series determine 1f the series converges or diverges.

o

Lz(

n=l

Lad
L
__.--l-.

=

+

[a—
 —

N

= n-1
;‘W’? +1
= 2n’+7

>

= n'sin®(n)

D- Absolute Convergence.

For each of the following series determine if they are absolutely convergent, conditionally
convergent or divergent.

'_l)r.l+1

-
[

—
.

.
DM
—
|
L
=
3
i
—
+
T
S
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Problems

Sheet No.5

E- Ratio Test.

For each of the following series determine if the series converges or diverges.

)
M

EJJ
M

F- Root Test.

For each of the following series determine if the series converges or diverges.

o

n=1

S

=

k-1

= n
. :E: len

=0

o _5}

-4

3n+1 o
1. _
Z(4—2n)

1-3n

14+2n

G- Power Series.

For each of the following power series determine the interval and radius of convergence.

= 1 , "
LY ———— (4x—12
g(fB)’M(n‘Jrl){ )
0o ”2u+l N
2. e (2x+17)
n=0
. i n+1 (x ,))n
. aaee——
=(2n+1)!
o ql+2n "
4. Z$(A+3)
n=0 =~
5. iﬁ (4x—1)""
n=0 n
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Problems Sheet No.5
H- Taylor Series.

For problems 1 & 2 use one of the Taylor Series derived in the notes to determine the Taylor
Series for the given function.

1. f(x)=cos(4x) about x=0

143
2. f(x)=x%"" about x=0
For problem 3 — 6 find the Taylor Series for each of the following functions.

3. f(x)= e about x =—4

4. f(x)=In(3+4x) about x=0

5. f(\):\—74 about x = -3

123



Vectors

Vectors - The Basics

The length of the line

segment is the magnitude of the vector and the direction of the line segment is the direction of the
vector. However, because vectors don’t impart any information about where the quantity is
applied any directed line segment with the same length and direction will represent the same
vector.

Consider the sketch below.

6_

5

4L

-

2
I\ | | | | i | | | |
S N4 3 -2 - | 1t 2 3

2

A representation of the vector v = (\ﬁl.(.‘f?} in two dimensional space is any directed line segment.

AB . from the point 4 =(x, ') to the point B = (x+ a,.V+a, ). Likewise a representation of

- f . . . . . .
the vector v = \(Il.az.(;fg} in three dimensional space is any directed line segment. 4B . from the
point 4=(x.7.z) tothe point B=(x+a,.y+0a,.2+4a,).

Next we need to discuss briefly how to generate a vector given the initial and final points of the

representation. Given the two points 4 =(a,.a,.a;) and B =(Db.b,.D; ) the vector with the

representation AB is. r

F:<b1 _al-bﬁ _(T?‘b3 —(?3>

Note that we have to be very careful with direction here. The vector above is the vector that starts
at 4 and ends at B. The vector that starts at B and ends at 4. i.e. with representation BA is.

W= (nl —b.a,—b,.a, —E)s:b
When determuning the vector between two

points we always subtract the initial point from the terminal point.
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Example 1 Give the vector for each of the following.
(a) The vector from (2.-7.0) to (1.-3.-5).

(b) The vector from (1.—3.—5] to ( 2.—7.{}:].
(¢) The position vector for (—9{}.4 )
Solution

(a) Remember that to construct this vector we subtract coordinates of the starting point from the
ending point.

(1-2.-3-(=7).-5-0}=(-1.4.-5)
(b) Same thing here.
(2-1-7—(-3).0—(-5)) =(L.-4.5)

Notice that the only difference between the first two 1s the signs are all opposite. This difference
1s important as it is this difference that tells us that the two vectors point in opposite directions.

(¢) Not much to this one other than acknowledging that the position vector of a point is nothing
more than a vector with the point’s coordinates as its components.

(-90.4)

Magnitude

f !

The magnitude, or length. of the vector v = <r.’11. 1y, ) 1s given by,
- 2, 2, 2
[¥l|=a; +a; +a;

Example 2 Determine the magnitude of each of the following vectors.
(a) @ =(3.-5.10)

ffl 1 2 .‘\3

W55/

(¢) w={(0.0)

(@) i =(1.0.0)

Solution
There 1sn’t too much to these other than plug into the formula.

(b) ii =

@) |a]|=v9+25+100 =134 o) [ii] = %+§:ﬁ:1

© ¥ =v0+0=0 @ [i|=v1+0+0=1



We also have the following fact about the magnitude,

If ||| =0 then i=0

This should make sense. Because we square all the components the only way we can get zero out
of the formula was for the components to be zero in the first place.

Unit Vector

Any vector with magnitude of 1. i.e. ”ff” =1. is called a unit vector.

Zero Vector

The vector W= <0. 0> that we saw in the first example is called a zero vector since its

components are all zero. Zero vectors are often denoted by 0. Be careful to distinguish 0 (the

number) from O (the vector). The number 0 denotes the origin in space. while the vector 0
denotes a vector that has no magnitude or direction.

Standard Basis Vectors
The fourth vector from the second example. i= (:1. 0.0) . is called a standard basis vector. In

three dimensional space there are three standard basis vectors,

i=(100) 7=(0.L.0) Kk=(0.0.1)

In two dimensional space there are two standard basis vectors.

i =(1.0) j=(0.1)

2- Vector Arithmetic

126




We'll start with addition of two vectors. So. given the vectors @ = <al.ﬂg. a3} and

b= (bl.bz.f)3> the addition of the two vectors is given by the following formula.

i+b={a,+b.a,+b,.a,+b,)

The following figure gives the geometric interpretation of the addition of two vectors.

This is sometimes called the parallelogram law or triangle law.
Computationally. subtraction is very similar. Given the vectors a = { a.a,. a3> and

b= (bl.bz.b3> the difference of the two vectors is given by,

i—b ={a,~b.a,—b,.a;—b;)

127



Here 1s the geometric interpretation of the difference of two vectors.

b

Ry
I
Ty

57)

The next arithmetic operation that we want to look at is scalar multiplication. Given the vector
a= {f}rl N a3> and any number ¢ the scalar multiplication is.

ca= <ml._mQ._ms>

So. we multiply all the components by the constant ¢. To see the geometric interpretation of
scalar multiplication let’s take a look at an example.

Example 1 For the vector d = {:2. 4> compute 3q. +g and —2a . Graph all four vectors on

1|

the same axis system.

Solution
Here are the three scalar multiplications.
_ 1. \ -~ g
= 2 —a= g ={-4 —
3a <6.1H> 2(? (1 2/} 2a { 4 8)
Here is the graph for each of these vectors.
12
10+
gl Ja
=
40
22d G
l | | l |
—4 Sy 2 4 &
2L
4
—-2d
4=
_8 -
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The first is parallel vectors. This is a concept that we will see quite a bit over the next couple of
sections. Two vectors are parallel if they have the same direction or are in exactly opposite
directions. Now. recall again the geometric interpretation of scalar multiplication. When we
performed scalar multiplication we generated new vectors that were parallel to the original
vectors (and each other for that matter).

So. let’s suppose that @ and b are parallel vectors. If they are parallel then there must be a
number ¢ so that,

i=ch
So. two vectors are parallel if one is a scalar multiple of the other.
Example 2 Determine if the sets of vectors are parallel or not.
(@) d=(2.-4.1). b =(-6.12.-3)

(b) G =(4.10). b =(2.-9)

Solution

—_

(a) These two vectors are parallel since b =-3a

(b) These two vectors aren’t parallel. This can be seen by noticing that 4{%] =2 and yet

10{%] =5=-9. In other words we can’t make d be a scalar multiple of b .

The next application 1s best seen 1n an example.

Example 3 Find a unit vector that points in the same direction as W = <—5. 2, 1> .

Solution

Okay. what we’re asking for is a new parallel vector (points in the same direction) that happens to
be a unit vector. We can do this with a scalar multiplication since all scalar multiplication does is
change the length of the original vector (along with possibly flipping the direction to the opposite
direction).

Here’s what we’ll do. First let’s determine the magnitude of 1.

[i|=v254+1 =30

Now, let’s form the following new vector.
- 1 _

! 5 2
=—w=—(-52,1
i ||1T|| " n < 5 >

/ \
= )
/

The claim is that this 1s a unit vector. That’s easy enough to check

_ 25 4 1 30
7] = —r— = |—=1
30 30 30 30

This vector also points in the same direction as ' since it is only a scalar multiple of ' and we
used a positive multiple.
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W

So. in general, given a vector W, i/ = —— will be a unit vector that points in the same direction

7

as w.
Properties
If ¥v. 1 and i are vectors (each with the same number of components) and a and b are two
numbers then we have the following properties.

V+it=w+7 il+(V+w)=(il +7)+

v+0=v vV=v

a(v+iw)=av+aw (a+b)v =av+bv

3- Dot Product

The next topic for discussion is that of the dot product. Let’s jump right into the definition of the

dot product. Given the two vectors @ = <G1 N f:r3> and b = {bl.bg -ba> the dot product is.

Geb = ab, + a,b, + asb, (1)

Sometimes the dot product is called the scalar product. The dot product is also an example of an

inner product and so on occasion you may hear it called an inner product.
Example 1 Compute the dot product for each of the following.
(a) V=51 —8j.w=1i+2]
) @=(0.3,-7).b=(2.3.1)

Solution
Not much to do with these other than use the formula.

(a) Teir=5-16=—11

(b) @b =0+9-7=2

Here are some properties of the dot product.

Properties
le(V +7) = 1oV + 100 (V)i =7V o) =c(Verr)
Foit = ifi 70=0
o7 =7’ If 77 =0 then 7=0

The proofs of these properties are mostly “computational” proofs and so we’re only going to do a
couple of them and leave the rest to you to prove.

Proof of iis(V +10) =iV + e
We’ll start with the three vectors, # = <H1.H1 _____ Hn> LV = <1'1.1‘2 _____ v, :} and
W= {11'1 S TN 11'H> and yes we did mean for these to each have # components. The theorem

works for general vectors so we may as well do the proof for general vectors.
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= {2V + W UV UWy L u,v, + HR‘H‘”>
= {1111'1..*;21'3 _____ 1, v, )+ <1{111‘1 WS . . i 11',,}
—<H1.H2 _____ r;">-<11.12 _____ 1"}+<H1.H2 _____ ”n,-).<1“1'1"2 _____ 11n>
= l*V + UiV
There is also a nice geometric interpretation to the dot product. First suppose that #is the angle

between @ and b suchthat 0 <& < 7 as shown in the image below.

5

We can then have the following theorem.

4- Applications of Dot Products
A. Find the angle between two vectors.

Theorem
Geb = la| HEHCOSH (2)
Proof
Let’s give a modified version of the sketch above.
A
) i3
b
e A
a
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The three vectors above form the triangle 4OB and note that the length of each side is nothing
more than the magnitude of the vector forming that side.

The Law of Cosines tells us that,

H_r

Also using the properties of dot 1)1‘0ducts we can write the left side as,

Ha b” ](a b]
— Giodi —Gvh —bedi +beb

= |} - 2a-5 + 5[

*|2 ~2[a| [5]cose

Our original equation is then.

HE—EHE =|all +‘5‘3 —2||EH HSHCOSQ

Jalf —2a + |5 =Jalf +[5[ ~2]a] |5 cose

—2a+b =2 ‘5‘&359
d«b = a| ngcosﬁ
|

Example 2 Determine the angle between & ={3.—4.—1) and b = (0.5.2).

Solution
We will need the dot product as well as the magnitudes of each vector.
b =- bl
The angle is then.
l -7
cosf = —0.8011927

Hn” H&H V26329

@ =cos(-0.8011927) = 2.5 radians=143.24 degrees
B. Determine parallel and orthogonal of vectors.
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The dot product gives us a very nice method for determining if two vectors are perpendicular and
it will give another method for determining when two vectors are parallel. Note as well that often
we will use the term orthogonal in place of perpendicular.

Now. if two vectors are orthogonal then we know that the angle between them is 90 degrees.
From (2) this tells us that if two vectors are orthogonal then.

Geb =0

Likewise. if two vectors are parallel then the angle between them is either O degrees (pointing in
the same direction) or 180 degrees (pointing in the opposite direction). Once again using (2) this
would mean that one of the following would have to be true.
a-b =a| |5] (9=0°) OR &b =—|a] |p| (9 =180°)
Example 3 Determine if the following vectors are parallel. orthogonal. or neither.
—- ! vooT
— 1% —
(a) a={6.-2.-1). b =(2.5.2)

My ii=27—F. 7=—174+17

Solution
(a) First get the dot product to see if they are orthogonal.

Geb=12-10—-2=0

The two vectors are orthogonal.

(b) Again. let’s get the dot product first.

4 4

So. they aren’t orthogonal. Let’s get the magnitudes and see if they are parallel.

Fl=5 ==

a5

4

Now. notice that.

thn

=[] ¥

So. the two vectors are parallel.

C. Projections.
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The best way to understand projections is to see a couple of sketches. So, given two vectors d

—

and b we want to determine the projection of 5 onto a. The projection is denoted by proj; b .

Here are a couple of sketches illustrating the projection.

So. to get the projection of b onto @ we drop straight down from the end of b until we hit (and
form a right angle) with the line that is parallel to @. The projection is then the vector that is
parallel to d . starts at the same point both of the original vectors started at and ends where the

dashed line hits the line parallel to a .

There is an nice formula for finding the projection of b onto @ . Here it is,

Note that we also need to be very careful with notation here. The projection of 7 onto ) is given

by

3

i .__.:E."E_)"
proj; a HE

We can see that this will be a totally different vector. This vector is parallel to b . while proj; b

is parallel to @ . So. be careful with notation and make sure you are finding the correct
projection.

Here’s an example.
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Example 4 Determine the projection of b= <2. 1.—]:} onto d = {1. U.—2> .

Solution
We need the dot product and the magnitude of @ .
dob =4 lal =5
The projection is then.
= G
proj; b =——5
|a
4 \
=—(10.-2)
_[4,._8)
A5 5

Example 5 Determine the projection of @ = <1.0.—2> ontoh = {2.1.—]} :

Solution

We need the dot product and the magnitude of b .

Gob =4 o] =6
The projection is then.
_dDb =
proj;a=-——=b
|
4
=—{2.1.-1
NI}
(422
\3'3° 3

D. Direction cosine.

This application of the dot product requires that we be in three dimensional space unlike all the
other applications we’ve looked at to this point.

Let’s start with a vector. d@ . in three dimensional space. This vector will form angles with the x-

axis (& ), the v-axis (), and the z-axis (). These angles are called direction angles and the
cosines of these angles are called direction cosines.

Here is a sketch of a vector and the direction angles.
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x ¥
The formmulas for the direction cosines are.
asi  a d-j a, dsk a
oS = ——=—L cosﬁ:%: = COS}/:T:TS
i [l @ lal al ]

where 7 . j and k are the standard basis vectors.

Let’s verify the first dot product above. We’ll leave the rest to you to verify.

dei = <al.nz.a3 >-<1. 0, 0} =a,

Here are a couple of nice facts about the direction cosines.

The vector i = {COS 0. C0S f3.CoS f} 1s a unit vector.

cos’ a+cos? f+cos’y=1

R

i =|a|{cos c.cos B.cos y)

Let’s do a quick example involving direction cosines.
Example 6 Determine the direction cosines and direction angles for @ = (2. L. —4> .

Solution
We will need the magnitude of the vector.

la|=+4+1+16 =21

The direction cosines and angles are then.
2
A21
1
oS ff=——
V21

cosy =

cosa = o =1.119 radians = 64.123 degrees
£ =1.351 radians = 77.396 degrees

y =2.632 radians =150.794 degrees

5] £

5- Cross Product.
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